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Abstract 

Tetrabromobisphenol-A (TBBPA) is the most widely used flame retardant. Flame 

retardants are sprayed on furniture, mattress beds, children’s pajamas, car seats, upholstery, 

carpets, and rugs in the United States. Chemical immune reactivity may play a role in the 

epidemic of autoimmune disease. The goal of this research is to investigate whether any 

correlation exists between immunological reactivity to TBBPA, a key chemical used in most 

flame retardants, and neurological autoimmune target sites that are associated with neurological 

autoimmune diseases with a diverse and specific list of antibodies that include myelin basic 

protein, myelin-associated glycoprotein, alpha-synuclein, aquaporin receptors, and S100B 

antibodies with human serum samples. The outcomes of this research can be used to support the 

development of safety regulations and for identifying potential health concerns for current 

mandatory flame-retardant legislation. Additionally, this research may support the decisions 

made in respect of those suffering from neurological autoimmune diseases, as to whether 

removing flame retardant chemicals is a factor for consideration. 
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Chapter 1: Introduction 

Autoimmunity is a condition in which the immune system erroneously attacks and 

destroys tissues or compounds in the body (hormones, enzymes, etc.). Although it is estimated to 

affect 50 million Americans, a count that surpasses the number of cancer and heart disease cases 

combined, autoimmunity remains largely misunderstood, under-diagnosed, and poorly managed, 

if at all, according to the American Autoimmune Related Disease Association (2015, April). 

It has been estimated that between 23.5 million and 50 million Americans suffer from 

autoimmune disease; further, one in five women and one in seven men are diagnosed with 

autoimmune disease, according to the American Autoimmune Related Disease Association 

(2015, April).  These figures do not consider the millions of other people who have not been 

diagnosed with autoimmune disease, or whose condition has not advanced enough to be called a 

disease, even though they suffer from the symptoms. Researchers have found that chemical 

exposure, combined with an activated immune system or genetic risk, creates a recipe for the 

development of autoimmunity with disorders such as type I diabetes, multiple sclerosis, systemic 

lupus erythematous, and various idiopathic autoimmune diseases (Pollard & Kono, 2013; 

Barragan-Martinez et al., 2012). 

Only a minority of the synthetic compounds introduced to our environment has been 

researched individually, leave alone compounds in conjunction with each other. The 

Environmental Protection Agency (EPA) doesn’t require testing chemicals introduced in the 

market, unless evidence of potential harm exists, which means testing seldom happens. The EPA 

approves about 90% of the new chemicals and only a quarter of more than 80,000 have been 

tested for toxicity (Canor, 2008). Regulations relating to environmental toxins in the United 
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States are lax and outdated, allowing tens of thousands of untested chemicals into our 

environment and our bodies. A lab test on any of us would probably show levels of more than 

200 different chemicals, some of them dangerously high (Houlihan, Kropp, WilSes, Gray, & 

Campbell, 2005).  

American children are born with high levels of environmental chemicals in their systems. 

For example, a 2005 study of cord blood from newborns found almost 300 environmental 

compounds, including mercury and dichlorodiphenyltrichloroethane (DDT) (Houlihan et al., 

2005). At the other end of the life spectrum, environmental toxins have been linked with 

neurodegenerative conditions such as Alzheimer’s and Parkinson’s disease (Stein, Schettler, 

Rohrer, & Valenti, 2008; Huang et al., 2005; Kelly et al., 2015). Researchers can predict an 

increased risk for Autism before a child is even born, by screening for antibodies in the brain of 

the fetus in the mother, during the third trimester (Bauman et al., 2013). Autism, which is 

increasingly being found to be autoimmune in nature, is the fastest growing developmental 

disability today; its prevalence is increasing from 10 to 17%each year, and it is linked to 

environmental triggers (Cavagnaro, 2007). It has been estimated that one in fifty children in the 

United States suffers from Autism Spectrum Disorder (Center for Disease Control, 2013). 

However, a more comprehensive study in South Korea shows its rate to be one in every 38 

children. Researchers suggest that South Korean children aren’t necessarily more prone to 

Autism, but that the study was actually more thorough and that autism rates are much higher in 

the United States as well (Kim et al., 2011). The rates of Autism, neurodegenerative diseases, 

and autoimmunity may be associated with environmental chemicals. 

Research shows that Americans are now born with increasingly high levels of chemical 

and toxin burdens, and new exposure may occur as early as at the time of breastfeeding. (Lunder, 
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2003). Chronic exposure to arsenic in human drinking water has been shown to alter the lung 

barrier and hinder healing of wounds (Olsen et al., 2008). Pesticides have been found in food and 

drinking water and are now considered a major route of exposure to the general population—the 

organo-photothionates in pesticides have been found to directly cause intestinal permeability, 

potentially leading to autoimmunity (Choi et al., 2007). Polychlorinated biphenyls (PCBs) are no 

longer used but are still commonly found in the environment and have also been linked to 

impaired immune tolerance (Choi et al., 2010). It appears that many chemicals, commonly found 

in our environment, may contribute to the growing epidemic of autoimmunity. 

On the other hand, there are conflicting views and concerns about the role chemicals may 

play in the development of autoimmune diseases. There are a limited number of human studies 

that show a direct causal link between the two. Safety and ethical concerns for chemical risks in 

research designs have limited most of the research in this field and experimental studies on 

animals. Human studies are void of clinical trials, and retrospective and prospective studies have 

limitations due to the difficulty in determining when exposure to a chemical may have occurred. 

An exception to this is pharmaceutical drug studies that lead to autoimmunity, as patients are 

closely monitored with respect to dosage, clinical outcomes, and the development of 

autoimmune reactions. Two drugs, in particular, have been linked to chemical/drug induced 

autoimmunity. The first drug in procainamide for the treatment of cardiac arrhythmia and the 

second drug is hydralazine used to treat high blood pressure (Pollard et al., 2010). Despite the 

observed role that these medications/chemicals may play in causing autoimmunity in susceptible 

patients, the design of the clinical trial was not designed to directly answer the role of these 

medications in autoimmune disease development, and therefore, there is little direct evidence 

that these chemicals are causative in a statistically significant relationship. Outside of these two 
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drugs closely monitored in a clinical trial setting, most of the research on chemical associations 

with autoimmune disease in human subjects have been derived from epidemiological studies, 

occupational studies, and correlational studies (Schmidt, 2011).  

Statement of the Problem 

Chemical immune reactivity may play a role in the epidemic of autoimmune disease. A 

major concern in this regard is the group of chemicals that are flame retardants. Flame retardants 

are sprayed on all pieces of furniture, mattress beds, children’s pajamas, car seats, upholstery, 

carpets, and rugs in the United States. This practice was driven by the California Flammability 

Standard, Technical Bulletin 117 (TB117), which was instituted in 1975. TB117 states that a 

manufacturer is not permitted to sell items such as furniture, upholstery, or mattresses in 

California unless they are sprayed with flame retardants. As California is such a large consumer 

market, the guidelines of TB117 have been adopted by all major manufacturers throughout the 

country, leading to widespread use of flame retardants. As a consequence of TB117, studies have 

found that these chemicals can be detected in household dust and serum concentrations in the 

population (Zota, Rduel, Morello-Frosh, & Brody, 2008). A study showed that first-time mothers 

in the United States had levels of flame retardants in their breast milk, 75 times higher than in 

similar European studies (Lunder, 2003). Testing breast milk from women throughout the 

country showed that every subject demonstrated very high levels of flame retardants (Mazdai et 

al., 2003). High levels of flame retardants have also been identified in baby products such as 

nursing pillows, strollers, and baby carriers (Stapleton, Eagle, Sjödin, & Webster, 2012). 

Researchers have also found that infants may receive greater exposure to these chemicals than 

adults and that individuals, in general, are likely to be exposed to a higher than the acceptable 

daily intake of retardants(Staphletion et al., 2011). The incorporation of TB117 has led to an 
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influx of flame retardants into the human biota and the environment, and the effect they have on 

human health is a concern (Tung et al., 2016). 

There are more than 175 different flame retardants added to consumer products; however, 

tetrabromobisphenol-A (TBBPA) is the most widely used flame retardant. The potential for 

TBBPA to be a contributing factor to autoimmune disease is very high, due to known 

immunological influences of a structurally similar chemical found in plastic products called 

Bisphenol-A (BPA). BPA has been shown to promote many autoimmune-promoting reactions, 

such as cytokine activation, TH-17 activation, T-cell polarization, T-regulatory suppression, and 

activation of hydrocarbon receptors (Kharrazian, 2014). Immunoreactivity to BPA, measured 

with BPA bound to albumin antibodies, was recently shown to demonstrate a high degree of 

correlation with antibodies against neuron-specific antigens (Kharrazian & Vojdnai, 2016). Due 

to the molecular similarity of TBBPA to BPA and its wide use in household and consumer 

products, research is needed to identify whether TBBPA can be a chemical risk factor in the 

development of autoimmune disease. Furthermore, recent research has found that approximately 

8% to 13% of healthy blood donors demonstrate immunological reactivity to TBBPA by 

producing excess antibodies to TBBPA (Vojdnai, Kharrazian, & Mukherjee, 2014). 

Relevance and Significance of the Study 

The outcomes of this study will contribute to understanding the impact of 

Tetrabromobisphenol-A (TBBPA), a chemical found in flame retardants, on autoimmune and 

inflammatory target sites found with conditions such as autism, Parkinson’s disease, learning 

developmental disorders, and neurological autoimmune diseases. Evaluation of immune 

reactivity to autoimmune target sites, such as myelin basic protein (MBP) and myelin 

oligodendrocyte protein (MOG), have been associated with neuroinflammatory and neurological 
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autoimmune diseases. Anti-MBP and anti-MOG were found in 78.5% of autistic children and 

insignificantly in normal subjects. (Mostafa & Al-Ayadhi, 2013). Anti-MBP was also found to 

be significantly higher in 100 mothers of children with autistic disorder, compared to 100 age-

matched, unaffected children leading to the possibility that there may be a placental transfer of 

maternal antibodies in Autism (Singer et al., 2008). In addition to autism, anti-MOG and anti-

MBP are key serum biomarkers used to identify multiple sclerosis, and anti-MBP and anti-MOG 

have also been found to be key predictive biomarkers for identifying future demyelinating event 

after the onset of the disease (Berger et al., 2003). Anti-MOG is not only a useful biomarker in 

multiple sclerosis, but it is also a significant biomarker found in other inflammatory neurological 

diseases (Reindl, Lington, Brehm, & Egg, 1999).   

In addition to acute autoimmune and inflammatory conditions, there is evidence that anti-

MOG and anti-MBP are also found in chronic neurodegenerative disease. One study found 

increasing anti-MBP levels in patients suffering from Parkinson’s disease and that anti-MBP 

may be used as a valuable marker to monitor the progression of the disease (Papuc, Kurzepa, 

Kurys-Denis, & Grabarska, 2014). This study has found that between 4 % and 9% of our 

sampled healthy serum demonstrated elevations of MBP and MOG that may predict future 

disease process and determine active neuroinflammation. 

No current research demonstrates TBBPA impact on neurological autoimmune target 

sites such as MBP and MOG. TBBPA can act as a neurotoxin and induce cellular toxicity as well 

as disturb cellular dopamine secretion and alter acetylcholinesterase enzymatic activity (Liu et 

al., 2016). TBBPA was recently found to cause neurotoxic and apoptotic responses in cultured 

mouse hippocampal neurons in vitro (Szychowski & Wójtowicz, 2016). Additionally, TBBPA 

was found to have induced apoptotic and neurotoxic effects in mouse neocortical cells. Another 
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study found that TBBPA may produce neurotoxic effects, especially when challenged with 

oxygen-glucose deprivation (Ziemińska et al., 2012). Despite these limited neurotoxic animal 

studies, there has been no investigation of the role of TBBPA in neurological autoimmune 

reactivity. 

If a statistically significant correlation is found between TBBPA and autoimmune target 

site protein antibodies, it may suggest is the existence of a potential underlying relationship 

between chemical exposure and autoimmune reactivity. Identifying potential triggers for 

neuroinflammatory diseases is a growing concern that our population faces today. These diseases 

are classified as incurable, and currently, there are no effective treatment options. Preventive 

strategies for identifying and removing risk factors are essential for addressing this growing 

epidemic of neuroimmunological disorders, which are an important and relevant area of research. 

The outcome of this research can be used for supporting the development of safety regulations 

and identifying potential health concerns for current mandatory flame-retardant usage. 

Additionally, this research may support the decisions made in respect of those suffering from 

neurological autoimmune diseases, as to whether removing flame retardant chemicals is a factor 

to be considered.  

Research Questions and Hypothesis  

The theoretical framework that will guide this proposed study is the social ecological 

theory. The knowledge that exposure to TBBPA chemicals may impact neurological 

autoimmunity may lead to reconstructive and transformative outlooks on social and 

environmental issues. This research study hypothesizes that chemical exposure to TBBPA can 

lead to chemical binding to human protein and the development of new haptens that may 

promote neurological autoimmunity. Ten fundamental research questions will be investigated in 
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this study: (1) Can TBBPA bind to human albumin and induce immunological chemical 

reactivity as identified in TBBPA bound to albumin specific antibodies in human serum? (2) Is 

there a correlation between TBBPA immunological reactivity with neurological autoimmunity to 

the nerve sheath proteins (myelin basic protein and myelin oligodendrocyte protein)? (3) What is 

the relative risk (risk ratio) for exposure to TBBPA that leads to immune reactivity and the 

development of autoimmunity against nerve sheath proteins (myelin basic protein and myelin 

oligodendrocytic protein)? (4) Is there a correlation between TBBA immunological reactivity to 

S100B protein, the biomarker used to assess breakdown of the blood-brain barrier and 

neuroinflammation? (5) What is the relative risk (risk ratio) for exposure to TBBPA that leads to 

immune reactivity and the development of neuroinflammation and breakdown of the blood-brain 

barrier (S100B)? (6) Is there a correlation between TBBPA immunological reactivity and alpha-

synuclein, the protein aggregate marker for neurodegenerative diseases such as Parkinson’s 

disease? (7) What is the relative risk (risk ratio) for exposure to TBBPA that leads to immune 

reactivity and the development of protein aggregate antibody biomarkers for neurodegenerative 

diseases such as Parkinson’s (alpha-synuclein)? (8) Is there a correlation with TBBPA 

immunological reactivity and aquaporin-4 water-channel receptors, the target protein for 

autoimmune reactivity for neuromyletis optica? (9) What is the relative risk (risk ratio) for 

exposure to TBBPA that leads to immune reactivity against the autoimmune target protein of 

neuromyleitis optica (aquaporin-4 antibodies)? (10) Are there any differences in chemical 

immune responses between IgA, IgG, and IgM? 
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Definition of Terms 

Autoimmunity: an immune condition in which the immune system erroneously attacks its host. 

Autoimmune trigger: an immunologic insult that activates the immune response against the 

host, such as a pathogen, chemical, or dietary protein exposed to the host. 

Agonist: a chemical that binds to a receptor and activates the receptor to produce a biological 

response 

Alpha-Synuclein: an intracellular protein found in nerves that clumps together in Parkinson’s 

disease. 

Alzheimer’s: a neurodegenerative disease that develops from the product of tau proteins and 

amyloid plaques, leading to cognitive decline and dementia. 

Antibodies: immune cell products produced by B-cells to tag proteins for T-cell mediated 

destruction. 

Antagonist: a chemical that interferes or inhibits the physiological action of another chemical on 

a receptor. 

Arsenic: a compound toxic to humans found in soil, water, and food products 

Aquaporin-4: a water-channel receptor of the central nervous system and the target protein for 

neuromyleitis optica. 

Bisphenol A (BPA): a chemical used in polymers for making plastic products. 
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Brominated Flame Retardant (BFR): chemicals produced and sprayed on to objects to make 

them less flammable. 

Chemical immune-reactivity: an immune response to chemical exposure. 

Dichlorodiphenyltrichloroethane (DDT): a colorless, odorless, and tasteless insecticide. 

Environmental compounds: chemicals and pollutants that are harmful to humans and animals. 

Flame retardants: chemicals sprayed on furniture and clothing to reduce the spread of fire. 

Tetrabromobisphenol A: the most widely used brominated fire retardant. 

Immune system: the biological system used to fight pathogens and protect the body. 

Immune tolerance: the immune system’s ability to not react to dietary proteins, chemicals, or 

self-tissue proteins. 

Mercury: a toxic compound found in dental and medical products, soil, water, and foods. 

Myelin Basic Protein: a protein found to surround the nerve sheath that allows for faster nerve 

conduction. 

Myelin Oligodenrocyte Protein:  a protein found to surround the nerve sheath that allows for 

faster nerve conduction. 

Neuromyleitis Optica: an autoimmune disease impacting the optic nerves and the spinal cord. 

Parkinson’s disease: a neurodegenerative disease that develops from protein aggregation of 

alpha synuclein, leading to the slowness of movement and resting tremor. 
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Polychlorinated biphenyls (PCBs): a synthetic chemical compound used commercially for 

coolant fluids. 

Synthetic compounds: products that are made in the laboratory and are not found in nature. 

S100B: a calcium-binding protein and a biomarker, used to determine the breakdown of the 

blood-brain barrier. 

Summary  

Autoimmunity is a condition in which the immune system erroneously attacks the body’s 

own tissue. It is a devastating disease that impacts as much as 23 million Americans and leads to 

diseases such as type 1 diabetes, multiple sclerosis, rheumatoid arthritis, lupus, and 21 other 

autoimmune diseases, according to the prevalence reported by the National Institute of Health 

(NIH Publication 05-5140). Chemicals exposed to humans in our environment are a known 

trigger of autoimmunity. One of the chemicals to which humans are most commonly exposed, 

found in various household items today, is TBBPA used in flame retardants. In this study, we 

will investigate the correlation between immune reactivity to TBBPA and neurological 

autoimmune reactivity to myelin and myelin oligodendrocytic glycoprotein, aquaportin-4, alpha-

synclein, S100B. 
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Chapter 2: Literature Review 

Introduction 

This chapter will present the historical overview and theory involved with the use, safety, and 

potential role that TBBPA may play in the development of inflammatory and autoimmune 

diseases involving the nervous system. A detailed review of both immunological and 

neurological roles of TBBPA in both human and animal studies will be presented and concluded 

with a summary of both known and unknown health risks of TBBPA. This chapter will provide a 

research background to understand the importance of and need for this research study. 

Historical Overview of the Theory and Research  

TBBPA has been classified as a Brominated Flame Retardant (BFR), and since the beginning of 

its use in 1979, it has become the most widely used BFR worldwide, with annual production of 

more than 210,000 tons (Alaee, Arias, Sjodin, & Bergman, 2003). Research conducted in 1979 

initially found that TBBPA was easily metabolized from the body, and therefore, it was 

considered a safe compound without active biological activity (Brady, 1979). However, 

subsequent research found that TBBPA is not completely metabolized upon exposure and that 

TBBPA can accumulate in human fluids over time (Jakobsson et al., 2002). Not only was 

TBBPA found to accumulate in human fluids, but it was also later shown to build up in the 

adipose tissue of both animals and humans (Johnson-Restrepo, Adams, & Kannon, 2008). In a 

French human monitoring study of random women volunteers and their newborns, 44% TBBPA 

was found in analyzed breast milk samples and 30% in both maternal and cord serum samples 

(Cariou, 2008). In a Japanese human mother-infant study, TBBPA was measured in maternal 

blood, maternal milk, cord blood, and umbilical cords. Researchers detected levels of TBBPA 

and concluded that the chemical can pass through the blood-placenta barrier and lead to perinatal 
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exposure (Kawashiro, 2008). Recently, in a prospective study of 304 mothers and their children, 

flame retardants were detected in breast milk at three months’ post-partum and again in 36 

months: more than 70% of the subjects had detectable levels (Adgent, 2016). It appears that 

TBBPA is not as easily metabolized as had been first theorized in 1979. This study will further 

investigate the potential theory that chemicals, such as TBBPA, may play a role in the worldwide 

epidemic of autoimmune disease.  

The role that commonly encountered environmental chemicals play both in the 

development of autoimmune disease, and its immune reactivity has been published in numerous 

clinical studies (Bigazzi, 1997; McFadden et al., 2009; Wisnewski et al., 2010; Chipinda et al., 

2011; Barragan-Martinez et al., 2012; Perricone et al., 2013). Research in the past decade has 

further demonstrated that toxicants can induce autoimmunity. In addition, evidence studies for 

the role of chemicals in the development and progression of autoimmunity continues to build 

acceptance (Bigazzi, 1997; McFadden et al., 2009; Wisnewski et al., 2010; Pollard, 2010; 

Chipinda et al., 2011; Barragan-Martinez et al., 2012; Perricone et al., 2013). A recent expert 

panel workshop titled “Workshop on the consensus statement on the role of the environment in 

the development of autoimmune disease consensus statement” evaluated existing data and 

concluded that critical advances in the field had been made in the last ten years; but much more 

research is necessary to understand the role that environmental toxicants and chemicals play in 

autoimmunity (Parks et al., 2014). Currently, there is a need to identify which chemicals pose a 

risk to autoimmune disease to manage the growing epidemic of autoimmune diseases that impact 

patient lives and increase health care costs. Interest in commonly exposed chemicals, especially 

chemicals found in our household products such as TBBPA, are of critical research significance, 
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as we are directly exposed to them daily. The frequent exposure to TBBPA may play a role in 

contributing to the worldwide rise and epidemic of the autoimmune disease.  

The Theoretical Framework That Will Guide the Research Question 

The theoretical framework that will guide this proposed study is the social ecological theory. The 

social ecological theory has been used to develop guidelines for community health promotion by 

considering variables such as corporate-decision makers, legislators, and environmental 

pollutants in promoting the well-being of others (Stokles, 1996). This theory emphasizes the 

complexity of relationships between environment, social, political, legal, and ecological 

influences (Stokles, 1996). It works toward transformative and reconstructive approaches to 

harmonize people and nature (Fox & Aldred, 2016). Developments in environmental pollution 

and toxicology that promotes man’s dominance over nature are viewed as ecological crises 

(Weiss & Bellinger, 2006). The ideology is concerned with how factors such as individual 

economic motivations impact the world (Oishi, 2013). According to the social ecology theory, 

life and environment should be seen as complex systems that are interrelated (Grzywacz & 

Fuqua, 2000).  

According to this theory, ecological problems are a result of social dysfunctions, which 

include industrial expansion, exploitation, deforestation, and environmental pollution (Cumming 

& Peterson, 2017). The social ecological theory is embraced by environmentalists who identify 

ecological problems such as preservation of wildlife, global warming, and reducing global 

toxicity (Alava et al., 2017). Identifying how toxic pollutants impact human health and society as 

a whole is necessary to initiate social consciousness and change (Stokols, 2000). These include 

changes in public policy (local, state, national, and global), relationships among organizations, 

institutions, and both interpersonal and intrapersonal factors (Fox & Aldred, 2016). According to 
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the social ecological view, it is necessary to have environmental protection programs to support 

societal health (Geller Winett, & Everett, 1982). Developing integrative models to address joint 

influences of personal and environmental factors in health promotion and disease etiology is a 

challenge faced by the social ecological theory (Christopherssen, 1989). 

Currently, there is no public policy to limit the use or determine the safety of 

industrialized chemicals such as fire-retardants. Current U.S. legislation requires chemicals risk 

to humans to be proven before changes can be made to the current health policy and regulations. 

The social ecology theory purposes that legislative interventions have a powerful and necessary 

impact on public health (McKinlay, 1975). Determining the potential risk of fire retardants 

(TBBPA) to human health, as proposed in this doctoral proposal, is a necessary step to increase 

social consciousness, legislative actions, and public health policy, as promoted by the social 

ecology theory. The knowledge that exposure to TBBPA chemicals may impact neurological 

autoimmunity may lead to reconstructive and transformative outlooks on social and 

environmental issues. Social consciousness that TBBPA may be harmful to humans may lead to 

changes in social and political issues and manufacturing practices that can impact human health 

and environmental pollution and thereby promote changes in manufacturing legislation.  

The Review of the Literature  

A detailed literature review was conducted to identify any published research regarding the 

association between immunological reactivity with TBBPA and autoimmune target sites of the 

nervous system. Data sources included PubMed, EMBASE, and clinicaltrials.gov from inception 

until December 2016. At this time, no research on the specific associations between TBBPA and 

neurological autoimmunity has been published; however, a limited number of in vitro and animal 

studies have been published, demonstrating that TBBPA may have some potential neurotoxic 
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activity. In one in vitro study, low micromolar concentrations of TBBPA induced cerebellar 

granule cell damage by inducing oxidative stress in an environment challenged with oxygen-

glucose deprivation to stimulate the synergistic effects of TBBPA combined with cerebral 

ischemia (Ziemińska et al., 2012). In another in vitro study, TBBPA was found to potentially 

induce intracellular Ca+ release, which leads to cytotoxic and neurotoxic changes from glutamate 

influx in cultured cerebellar granule cells (Zieminska, 2014). In an in vitro study using rats, the 

neurotoxicological potential for brominated flame retardants was also shown to potentially occur 

from neurotransmitter uptake in brain synaptosomes and vesicles (Mariussen, 2002). Finally, in 

the only in vivo animal study, pregnant rats were exposed to dietary TBBPA postnatally, and the 

offspring were found to exhibit aberrant neuronal development immunohistochemically 

(Seagusa, 2012). The impact of TBBPA on the nervous system or neurological autoimmunity has 

not been extensively studied at this time; however, the literature illustrated several studies in 

which TBBPA can promote immunological mechanisms that may play a role in autoimmunity 

and/or neurological autoimmunity. 

TBBPA was shown to stimulate immune cells in vitro. Specifically, TBBPA was shown 

to increase MHC class II and CD86, CD 80, and CD 11 expression and interleukin and increase 

T-cell receptor expression (Koike, Yanagisawa, Takigami, & Takano, 2013). Similar 

immunological responses have been reported with toxic lead exposure, and it has been suggested 

that these reactions promote Th-2 mediated autoimmunity (Gao, Mondal, & Lawrence, 2007). 

TBBPA was found to trigger MAP kinases and protein kinase C in vitro with mussel hemocytes 

(Canesi et al., 2005). Activation of these kinase pathways has been found to induce lupus-like 

autoimmunity in mice (Gorelik, 2015). TBBPA was found to disrupt immune regulation by IFN-

γ production and signaling pathways (Almughamsi & Whalen, 2016). The IFN-γ mediated 
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signaling pathways have been found to be key mechanisms in the primary inflammatory pathway 

of autoimmunity (Strassner & Harris, 2016). TBBPA has been found to enhance the release of 

interleukin (IL)-6, IL-8, and prostaglandin E2, and suppress TGF-beta in HTR-8/SVneo cells 

(Park, Kamau, Korte, & Rita Loch-Caruso, 2014). The expression of these cytokine pathways in 

conjunction with suppression of regulatory T cells is a key mechanism in the promotion of 

autoimmunity (Zhang et al., 2015). TBBPA has been shown to target MAPK pathways (ERK1/2 

and p38) and lead to increased IL-1β secretion from immune cells (Anisuzzaman & Whalen, 

2016). Increased IL-1β secretion leads to the activation of T-helper-17 cells (TH-7). The 

activation of TH-17 is the key inflammatory pathway in the expression of autoimmune disease 

(Lasigliè et al., 2011). In summary, TBBPA exposure in animals in vitro has been shown to 

activate immunological pathways involved in autoimmune disease promotion.  

 In addition to the impact TBBPA has on neurological and immunological pathways, 

some research illustrates that TBBPA can disrupt thyroid metabolism. TBBPA has been shown 

to function as a thyroid endocrine disruptor of homeostasis (Guyot, 2014). It has been found to 

share structural similarity with thyroid hormones and have the ability to interfere with thyroid 

hormone physiology (Grasselli et al., 2014). Additionally, TBBPA has been found to alter 

thyroid hormone gene expression (Guyot, 2014). In animals, TBBPA has been shown to affect 

neurobehavioral development and thyroid hormone levels (Darnerud, 2003).  

Summary of What is Known and What is Unknown about the Topic 

TBBPA has been classified as a Brominated Flame Retardant (BFR), and since the 

beginning of its use in 1979, it has become the most widely used BFR worldwide. TBBPA use 

has led to the accumulation of the chemical in both animals and humans worldwide (Decherf & 

Demeneix, 2011). TBBPA was initially thought to be easily metabolized from the body, and 
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therefore, a safe compound without active biological activity. However, subsequent research has 

found that TBBPA is not completely metabolized upon exposure, that TBBPA can accumulate in 

human fluids over time, and that there are potential health concerns with TBBPA exposure. 

Research in the past decade has further demonstrated that chemicals can induce autoimmunity. 

At this time, no research on the specific associations between TBBPA and neurological 

autoimmunity or autoimmunity, in general, has been published. However, a limited number of in 

vitro and animal studies have been published, demonstrating that TBBPA may have some 

potential neurotoxic activity. Additionally, TBBPA can promote immunological mechanisms 

that may play a role in autoimmunity and/or neurological autoimmunity. Lastly, some research 

illustrates that TBBPA can disrupt thyroid metabolism. 

The Contributions this Study Will Make to the Field 

This correlative research is a pioneer study, and it could possibly be one of the earliest 

research studies investigating the correlation of the role of TBBPA immune reactivity with the 

neurological autoimmune disease in humans. This study may contribute to the knowledge base of 

TBBPA as a potential threat to human health and may play a role as an autoimmune trigger for 

individuals suffering from autoimmune and inflammatory diseases of the nervous system. 

Additionally, this study may provide further evidence that TBBPA, as a flame retardant, may 

need to be removed and replaced with safer options.  

Summary  

 Autoimmune diseases are a growing worldwide epidemic, as are neurodevelopment 

disorders and neurodegenerative diseases. Increased use of environmental chemicals may play a 

potential role in neuroinflammatory and autoimmune disorders of the nervous system. TBBPA is 

one of the most common chemicals to which humans are exposed, due to its presence in and 

18



19	
  	
  

chemical contamination of food products. The current literature has limited research investigating 

the role of TBBPA and autoimmunity. Correlative investigation of TBBPA immune reactivity and 

neurological autoimmunity in human subjects may contribute data that may impact individuals 

suffering from autoimmunity or inflammatory diseases of the nervous system. In the next chapter, 

the detailed methodology and study design will be presented.  
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Chapter 3: Methodology 

This chapter will review the research design, specific research methods, statistical 

methodology, resource requirements, reliability, and validity of the research methodology, 

timeline, and the limitations and delimitations used in this study. A specific step-by-step 

breakdown of all laboratory procedures using ELISA methodology will be presented in addition 

to each specific descriptive and inferential statistical analysis used for each correlative analysis.  

Research Methods to Be Employed 

 A quantitative cross-sectional correlation research study was conducted to assess the 

relationships between human subjects with TBBPA bound to albumin antibodies with myelin 

basic protein (MBP) antibodies, myelin oligodendrocytic glycoprotein (MOG) antibodies, 

aquaporin-4 antibodies, alpha-synuclein antibodies, and S100B antibodies. The goal of this study 

was to investigate whether there is an association between chemical immune reactivity to 

TBBPA, found in flame-retardants, in human subjects and biomarkers used to diagnose 

inflammatory and autoimmune diseases of the nervous system. A power analysis was conducted 

to determine the number of subjects required for the study to achieve statistical significance. 

Sample size power calculations for correlation analysis with r0 at 0.3 and ra at 0.6 - 0.8 indicated 

that 57 samples would be sufficient to determine the population effect size to power this study 

properly (Appendix B).  

Specific Procedures to Be Employed 

The specific methodology for the research design was divided into five steps and 

received institutional approval from the director of the laboratory (Appendix A). Step 1 was the 

preparation of laboratory supplies and equipment calibration. Step 2 was the development of the 

ELISA plates necessary for conducting the laboratory investigation. In Step 3, the laboratory 
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methodology was employed to detect antibodies using direct enzyme-linked immune assay 

(ELISA) laboratory techniques. In Step 4, an optical density reader was used to quantify 

antibody reactions. Step 5 was the final step that involved evaluating the data and performing 

statistical analysis to evaluate research outcomes.  

Step 1: Preparation and Supplies 

Non-identifiable blood samples from 100 blood donors were purchased from Innovative 

Research Inc. (Southfield, MI, USA). The blood samples were certified as healthy blood donor 

samples, according to the Center for Disease Control (CDC) criteria. The blood was collected in 

a sterile blood collection bag containing anticoagulants. Before shipping, each blood sample was 

tested, according to FDA guidelines, to detect Hepatitis B surface antigen, antibodies to HIV, 

antibodies to hepatitis C, HIV-1 RNA, Hepatitis C RNA and syphilis. All units were required to 

yield non-reactive/negative results for each test performed. No medical examinations or 

additional lab tests were conducted to determine the health status of the donors otherwise.  

  Tetrabromobisphenol-A, myelin oligodendrocytic glycoprotein (MOG), alpha-synuclein, 

aquaporin-4, and S100B purchased from Sigma Aldrich (St. Louis, MO) were used to develop 

antigen-coated ELISA plates. Tools and supplies for ELISA were purchased from major 

laboratory suppliers; they included blank polystyrene microplates, pipetting reagent reservoirs, 

plate-sealing tape, racked tube systems for use with multi-channel pipettes, and unique vacuum-

manifold apparatus for filter-based ELISA. 

 Lastly, the equipment was calibrated to ensure the accuracy of data. A computerized 

ELx808 absorbance microplate reader was used to measure enzyme-linked optical density, and a 

computerized Elx405 microplate washer was used to clean the ELISA plates throughout ELISA 

preparation and after each enzyme and sera application. Certification for annual calibration was 
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satisfied before the study. Six samples were used in the study during calibration and for ELISA 

control wells, leading to 94 samples out of 100 to be used in the actual study.  

Step 2: Developing ELISA Plates  

Preparations of Tetrabromobisphenol-A ELISA plates were conducted by measuring 1 

gram of human serum albumin (HSA) that was dissolved in 100mL of 0.01 M phosphate 

buffered saline (PBS) pH 7.4, to which 40 mg of 1-ethyl-3-(3-dimethylaminopropyl) 

carbodimide HCL was added and kept on the stirrer for 10 minutes. In a separate tube, 100 mg of 

N-hydroxysulfosuccinimide sodium salt was dissolved in 10 mL distilled water and was added 

drop wise to the mixture. In 10 ml of 0.01 M PBS pH7.4, 100 mg of Tetrabromobisphenol-A will 

be dissolved; each was separately added dropwise to the protein mixture. The mixtures were kept 

for one hour at room temperature, and then, for 4 hours at 4 degrees Celsius. The unreacted small 

molecules were removed by dialysis, using a molecular cutoff of 8,000 Dalton. The conjugation 

of haptenic chemicals was confirmed by sodium dodecyl sulfate (SDS) gel electrophoresis and a 

shift in band configuration. In addition, spectrographic analysis of the conjugate was undertaken 

until there was an increase in absorption from 230 to 260 nM, which indicated that haptenic 

chemicals become covalently linked to the HSA or protein carrier. 

Step 3: Quantitative Antibody Reaction 

Antigens and peptides were dissolved in PBS or methanol at a concentration of 1.0 

mg/mL, then diluted 1:100 in 0.1 M carbonate-bicarbonate buffer at a pH of 9.5 and 100 uL were 

added to each well of the polystyrene flat bottom ELISA plate. Plates were incubated overnight 

at 4 degrees Celsius, and then, they were washed three times with 200 uL Tris-buffered Saline 

(TBS) containing 0.05% Tween 20 at a pH of 7.4. The non-specific binding of immunoglobulins 

was prevented by adding a mixture of 1.5% bovine serum albumin (BSA) and 1.5% gelatin in 
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TBS and incubated overnight at 4 degrees Celsius. Plates were washed, as described above, and 

then, the serum samples were diluted in the ratio 1:100 in 0.1 M PBS Tween containing 2% BSA 

were added to duplicate wells and incubated for an hour at room temperature. The plates were 

washed, and then, alkaline phosphatase goat anti-human IgG, IgM, and IgA F(ab’)2 fragments 

with an optimal dilution of 1:400-1:2000 in 1% HSA-TBS were added to each well; the plates 

were incubated for an additional one hour at room temperature. The plates were then washed five 

times with TBS-Tween buffer, and the enzyme reaction was started by adding 100 uL of 

paranitrophenylphosphate (PNPP) in 0.1 mL diethanolamine buffer 1 mg/mL containing 1 mM 

MgCl2 and sodium aside at a pH of 9.8. The reaction was stopped 45 minutes later with 50 uL of 

1 N NaOH, and the samples were then ready for quantitative analysis using an optical density 

reader.  

Step 4: Quantify Antibody Reaction 

A computerized ELx808 absorbance microplate reader was used to measure enzyme-linked 

optical density. The antibody reacted ELISA plates were inserted into the optical density reader. 

The optical density was recorded at 405nm by the microtiter reader to provide quantitative 

antibody reactivity levels, and then, it was compared with control wells. Measurements of optical 

density above control wells were used to determine increased antibody reactivity. This data was 

then evaluated for statistical significance.  

Step 5: Evaluation of Data for Statistical Correlation and Relative Risk 

Statistical analysis was performed using STATA software. The data was imported into STATA 

and coded. A descriptive analysis was conducted using histograms and scatter plots to identify 

any outliers or missing data. Statistical analysis was conducted to determine the correlation 

between the following: (1) Tetrabromobisphenol-A (TBBPA) bound to albumin antibodies and 

23



24	
  	
  

myelin basic protein (MBP) antibodies, (2) correlation between TBBPA bound to albumin 

antibodies and myelin oligodendrocytic glycoprotein (MOG) antibodies, (3) correlation between 

TBBPA bound to albumin antibodies and alpha-synuclein antibodies, (4) correlation between 

TBBPA bound to albumin antibodies and aquaporin-4 antibodies, (5) and correlation between 

TBPA bound to albumin antibodies and S100B antibodies. A separate analysis was conducted 

for three immunoglobulins: IgG, IgA, and IgM. It is possible for the relationships to exist for 

some immunoglobulins and not for others. The presence of statistically significant correlative 

relationships was conducted with Person’s coefficients, Kendall’s tau, and Spearman’s rho, 

which are parametric and non-parametric association measures for each of the relationships 

described above for IgG, IgA, and IgM (Appendix B). A significant p-value of 0.01 was 

determined to adjust for multiple comparisons using a Bonferroni correction, and a confidence 

interval of 95% was used. STATA software package was used to conduct all inferential and 

descriptive analysis. 

Relative risk was assessed by determining the risk ratios of exposure leading to chemical, 

immunological reactivity (TBBPA antibodies) and the development of neurological autoimmune 

disease biomarkers (MOG, MBP, alpha-synuclein, S100B, and AQP-4 antibodies) compared to 

non-exposed and non-disease samples. The 15 risk ratio calculations for this study include the 

following: (1) TBBPA IgA exposure and non-exposure with MBP IgA disease and non-disease 

outcomes, (2) TBBPA IgA exposure and non-exposure with MOG IgA disease and non-disease 

outcomes, (3) TBBPA IgA exposure and non-exposure with alpha synuclein IgA disease and 

non-disease outcomes, (4) TBBPA IgA exposure and non-exposure with aquaporin-4 IgA 

disease and non-disease outcomes, (5) TBBPA IgA exposure and non-exposure with S100B IgA 

disease and non-disease outcomes, (6) TBBPA IgG exposure and non-exposure with MBP IgG 
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disease and non-disease outcomes, (7) TBBPA IgG exposure and non-exposure with MOG IgG 

disease and non-disease outcomes, (8) TBBPA IgG exposure and non-exposure with alpha 

synuclein IgG disease and non-disease outcomes, (9) TBBPA IgG exposure and non-exposure 

with aquaporin-4 IgG disease and non-disease outcomes, (10) TBBPA IgG exposure and non-

exposure with S100B IgG disease and non-disease outcomes, (11) TBBPA IgM exposure and 

non-exposure with MBP IgM disease and non-disease outcomes, (12) TBBPA IgM exposure and 

non-exposure with MOG IgM disease and non-disease outcomes, (13) TBBPA IgM exposure 

and non-exposure with alpha synuclein IgM disease and non-disease outcomes, (14) TBBPA 

IgM exposure and non-exposure with aquaporin-4 IgM disease and non-disease outcomes, and 

(15) TBBPA IgM exposure and non-exposure with S100B IgM disease and non-disease 

outcomes. The calculation of risk ratios involved transforming the continuous optical density 

antibody variables into binary variables. One standard deviation from the mean was used to 

classify a positive exposure to both TBBPA and disease development for MOG, MBP, S100B, 

AQP-4, and alpha-synuclein. Risk ratio calculations were conducted using STATA software and 

included 95% confidence intervals and p-values set at 0.05 for statistical significance. 

Formats for Presenting Results 

Scatter plots will be produced to demonstrate bivariate linear relationships. The following 

scatterplots were produced for IgA, IgG, and IgM. The 15 scatter plots have been listed as 

follows: (1) TBBPA IgA with MBP IgA, (2) TBBPA IgA with MOG IgA, (3) TBBPA IgA with 

alpha synuclein IgA, (4) TBBPA IgA with aquaporin-4 IgA, and (5) TBBPA IgA with S100B 

IgA, (6) TBBPA IgG with MBP IgG, (7) TBBPA IgG with MOG IgG, (8) TBBPA IgG with 

alpha synuclein IgG, (9) TBBPA IgG with aquaporin-4 IgG, and (10) TBBPA IgG with S100B 

IgG, (11) TBBPA IgM with MBP IgM, (12) TBBPA IgM with MOG IgM, (13) TBBPA IgM 
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with alpha synuclein IgM, (14) TBBPA IgM with aquaporin-4 IgM, and (15) TBBPA IgM with 

S100B IgM. A list of the variables that were used for the 15 individual scatterplots has been 

presented in Table 1. In addition to the 15 individual bivariate scatterplots, three scatterplot 

matrix graphs were produced for each specific immunoglobulin (IgA, IgG, and IgM). 

Table 1 – List of Correlations 
Correlation 

Analysis 
Variable #1 Variable #2 

1 TBBPA bound to human albumin IgA Myelin basic protein IgA 
2 TBBPA bound to human albumin IgG Myelin basic protein IgG 
3 TBBPA bound to human albumin IgM Myelin basic protein IgM 
4 TBBPA bound to human albumin IgA Myelin oligodendrocytic glycoprotein IgA 
5 TBBPA bound to human albumin IgG Myelin oligodendrocytic glycoprotein IgG 
6 TBBPA bound to human albumin IgM Myelin oligodendrocytic glycoprotein IgM 
7 TBBPA bound to human albumin IgA Aquaporin-4 IgA 
8 TBBPA bound to human albumin IgG Aquaporin-4 IgG 
9 TBBPA bound to human albumin IgM Aquaporin-4 IgM 
10 TBBPA bound to human albumin IgA Alpha-synuclein antibodies IgA 
11 TBBPA bound to human albumin IgG Alpha-synuclein antibodies IgG 
12 TBBPA bound to human albumin IgM Alpha-synuclein antibodies IgM 
13 TBBPA bound to human albumin IgA S100B IgA 
14 TBBPA bound to human albumin IgG S100B IgG 
15 TBBPA bound to human albumin IgM S100B IgM 

 

Table 2 illustrates the outcomes of the 15 risk ratio calculations. The table includes 

exposure variables, disease variables, risk ratios, 95% confidence intervals, and p-values for each 

of the following risk ratios: (1) TBBPA IgA exposure and non-exposure with MBP IgA disease 

and non-disease outcomes, (2) TBBPA IgA exposure and non-exposure with MOG IgA disease 

and non-disease outcomes, (3) TBBPA IgA exposure and non-exposure with alpha synuclein 

IgA disease and non-disease outcomes, (4) TBBPA IgA exposure and non-exposure with 

aquaporin-4 IgA disease and non-disease outcomes, (5) TBBPA IgA exposure and non-exposure 

with S100B IgA disease and non-disease outcomes, (6) TBBPA IgG exposure and non-exposure 
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with MBP IgG disease and non-disease outcomes, (7) TBBPA IgG exposure and non-exposure 

with MOG IgG disease and non-disease outcomes, (8) TBBPA IgG exposure and non-exposure 

with alpha synuclein IgG disease and non-disease outcomes, (9) TBBPA IgG exposure and non-

exposure with aquaporin-4 IgG disease and non-disease outcomes, (10) TBBPA IgG exposure 

and non-exposure with S100B  IgG disease and non-disease outcomes, (11) TBBPA IgM 

exposure and non-exposure with MBP IgM disease and non-disease outcomes, (12) TBBPA IgM 

exposure and non-exposure with MOG IgM disease and non-disease outcomes, (13) TBBPA 

IgM exposure and non-exposure with alpha synuclein IgM disease and non-disease outcomes, 

(14) TBBPA IgM exposure and non-exposure with aquaporin-4 IgM disease and non-disease 

outcomes, and (15) TBBPA IgM exposure and non-exposure with S100B IgM disease and non-

disease outcomes. In summary, there was a total of 15 scatterplots and three scatterplot matrix 

graphs to illustrate the outcome data of the study.  
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Resource Requirements 

 Several resources were needed to conduct this study. Laboratory analysis was conducted 

in a state-licensed laboratory certified by the CLIA (Clinical Laboratory Improvement 

Amendments) and American College of Pathologists. The laboratory contained a computerized 

optical density absorbance microplate reader. The tools and supplies for ELISA methodology 

included blank polystyrene microplates, pipetting reagent reservoirs, plate-sealing tape, racked 

tube systems for use with multi-channel pipettes, and unique vacuum-manifold apparatus for 

filter-based ELISA. Laboratory reagents used in this study included human serum albumin, 1-

ethyl-3-(3-dimethylaminopropyl) carbodiimide HCL, N-hydroxysulfosuccinimide sodium salt, 

 
Table 2 - List of Risk Ratios 

 
Exposure Antibody Disease Antibody Risk Ratio 

TBBPA IgA Myelin basic protein IgA #1 
TBBPA IgG Myelin basic protein IgG #2 
TBBPA IgM Myelin basic protein IgM #3 
TBBPA IgA Myelin oligodendrocytic glycoprotein IgA #4 
TBBPA IgG Myelin oligodendrocytic glycoprotein IgG #5 
TBBPA IgM Myelin oligodendrocytic glycoprotein IgM #6 
TBBPA IgA Aquaporin-4 IgA #7 
TBBPA IgG Aquaporin-4 IgG #8 
TBBPA IgM Aquaporin-4 IgM #9 
TBBPA IgA Alpha-synuclein IgA #10 
TBBPA IgG Alpha-synuclein IgG #11 
TBBPA IgM Alpha-synuclein IgM #12 
TBBPA IgA S100B IgA #13 
TBBPA IgG S100B IgG #14 
TBBPA IgM S100B IgM #15 
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carbonate-bicarbonate buffer, bisphenol A, bisphenol A binding protein, alkaline phosphatase 

goat anti-human IgG, IgM, and IgA F(ab’)2 fragments, paranitrophenylphosphate, myelin basic 

protein, myelin oligodendrocytic glycoprotein, alpha-synuclein, aquaporin-4, S100B, and 

diethanolamine buffer.  

Reliability and Validity 

 ELISA assay is the gold-standard current technology used by all immunological 

laboratories to measure antibody reactions (Dobrovolskaia, Gam, & Slater, 2006). The test uses 

the basic concept of an antigen binding to specific antibodies. The assay uses antibodies and 

enzyme-mediated color change to detect the presence of either antigen (proteins, peptides, 

hormones, etc.) or antibody in a given sample. The color change is measured with computerized 

optical density evaluation, thereby providing accurate immune reactivity even with detections of 

extremely low concentrations (Crowther, 1995). ELISA testing is highly sensitive to 

compositional differences in complex antigen mixtures when the specific detecting antibody is 

present in relatively small amounts (Dobrovolskaia, Gam, & Slater, 2006). ELISA testing values 

are calculated by multiple-point parallel-line comparison and when performed with endpoint 

analysis, demonstrate good correlations when total antibodies are tested compared to 

radioimmunoassay (RIA) testing (Lagergard, Trollfors, Claesson, Schneerson, & Robbins, 

1988). Additionally, the ELISA methodology has the advantage of significantly lower time 

requirement than the RIA for performing a typical assay (Garvey, Thomas, & Linton, 1987). The 

laboratory methodology used in this study was the gold standard test to evaluate antibody 

reactions; this method has good reliability and validity.  
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Timeline 

 The Institutional Review Board (IRB) application was approved by Nova Southeastern 

University on August 18, 2017 (IRB#: 2017-508). Supplies and regents necessary for the 

research were attained after the IRB approval. The laboratory analysis took approximately five 

weeks to complete. Data analysis was promptly completed upon completion of the laboratory 

analysis and submitted on September 23 2017. The first draft of the dissertation proposal was 

completed on January 1, 2018. 

Limitations and Delimitations 

 
There are several limitations and delimitations to this study. This study used correlative data 

analysis. Correlation is not causative, and at this point, there is no clear understanding whether 

immune reactivity to TBBPA is causative of neurological autoimmunity. Overzealous immune 

reactivity may occur due to loss of overall immunological tolerance, leading to both neurological 

and chemical immune reactivity. Correlative statistical analysis with both parametric (Pearson’s 

coefficients) and non-parametric analysis (Spearman’s rank and Kendall’s tau) used to analyze 

data in this study does not permit to statistically account for confounding and effect modification 

factors in statistical data analysis. This study had anonymous healthy blood donors, and there 

was no information regarding their medical history. Additionally, this study is lacking in some 

degree of external validity. A random sample size does not reflect the population diversity 

accurately. 
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Chapter 4: Results  

Introduction 

This chapter will present both descriptive and inferential statistical results of the study. 

The data analysis of 94 subjects included scatter matrix charts and scatter plots to illustrate the 

correlation patterns of the data. Tables will be presented to exhibit the risk ratio outcomes. A 

review of data analysis methods will also be presented. The findings of the study will be 

presented with a detailed summary of the results. The data analysis of this study included both 

correlation analysis and measures of association with risk ratios. The correlation analysis 

includes 15 paired relationships that have been listed in Table 1. The risk ratio analysis includes 

15 paired measures of association that have been listed in Table 2. 

Data Analysis 

STATA software version 14.2 was used to conduct all inferential and descriptive 

analysis. The initial steps of the analysis were performed to avoid any violations of measurement 

error. Data analysis was conducted by importing three independent data sets into STATA that 

included the optical density measurements from ELISA for IgA, IgG, and IgM. The first step in 

the analysis was to build histograms and scatter plots to identify any outliers or missing data. The 

researcher conducted a careful review of all the data points and compared it to the original data 

to confirm that there were no errors in measurement between the IgA, IgG, and IgM data sets. A 

matching comparison of the STATA data editor feature was conducted with the original data set 

to ensure further that there were no errors in the importation of the data into the software. All of 

the steps were repeated twice to ensure accurate data. 

Correlational analyses were conducted using Pearson’s correlation for the parametric variables 

and Kendall’s tau and Spearman’s rho for the non-parametric variables to measure for IgG, IgA, 
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and IgM independently. A Bonferroni correction was conducted to adjust the p-value to decrease 

the likelihood of a type I error, given the large number of analyses. The adjusted alpha for 

statistical significance was set to 0.01. This value was determined by dividing an alpha value of 

0.05, which was divided by five, as five correlations were tested for each independent 

immunoglobulin. 

Scatter plots were produced to visualize the bivariate linear relationships for all 15-

correlation analysis. Pearson’s correlation coefficient value of r and the p-value have been noted 

on the scatter plots to provide the statistical significance and strength of the relationship to the 

graphic representation of the data. Additionally, three scatterplot matrix graphs were built to 

graphically summarize the associations for each specific immunoglobulin (IgA, IgG, and IgM). 

The measurement of risk ratios was conducted by converting each of the optical density 

continuous variables into binary variables. One standard deviation above the mean for each 

continuous variable was classified as a significant binary value of one. Any value below one 

standard deviation of the mean was classified as a non-significant binary value of 0. Standard 

deviations above one are commonly used to categorize abnormal reference ranges for medical 

laboratory ranges. Risk ratio analysis was conducted labeling the TBBPA antibodies as exposure 

variables and the neurological target protein antibodies as the disease outcome variable for each 

of the 15 relationships. 

Findings 

Relationships between Tetrabromobisphenol-A and Myelin Basic Protein 

The two-way scatter plot evaluation for TBBPA and MBP for IgA immunological 

reactive demonstrates a positive monotonic relationship (Figure 1). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p < 0.0001) with a moderate 
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correlation of 0.61. Spearman’s rank correlation was statistically significant (p-value < 0.0012) 

with a mild correlation of 0.33. Kendall tau rank correlation was statistically significant (p-value 

<0.0033) with a mild correlation of 0.23. The risk ratio for TBBPA IgA antibody production as 

an exposure variable and MBP IgA antibodies as an outcome variable was 13.3 (CI: 3.90, 45.50) 

and statistically significant (p-value <0.0001).  

 

Figure 1 - Linear Relationships with IgA TBBPA and MBP IgA 

 

 

The two-way scatter plot evaluation for TBBPA and MBP for IgG immunological 

reactive demonstrates a positive monotonic relationship (Figure 2). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 
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substantial correlation of 0.81. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.75. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.58. The risk ratio for TBBPA IgG 

antibody production as an exposure variable and MBP IgG antibodies as an outcome variable 

was 13.58 (CI: 5.55, 33.21) and statistically significant (p-value <0.0001).  

 

Figure 2 - Linear Relationships with IgG TBBPA and MBP IgG 

 

 

The two-way scatter plot evaluation for TBBPA and MBP for IgM immunological 

reactive demonstrates a positive monotonic relationship (Figure 3). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 
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substantial correlation of 0.87. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.84. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.67. The risk ratio for TBBPA IgM 

antibody production as an exposure variable and MBP IgM antibodies as an outcome variable 

was 22.4 (CI: 7.01, 70.10) and statistically significant (p-value <0.0001).  

 

Figure 3 - Linear Relationships with IgM TBBPA and MBP IgM 

 

 

Relationships between Tetrabromobisphenol-A and Myelin Oligodendrocytic Glycoprotein 

The two-way scatter plot evaluation for TBBPA and MOG for IgA immunological 

reactive demonstrates a positive monotonic relationship (Figure 4). Statistical analysis using 
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Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a moderate 

correlation of 0.68. Spearman’s rank correlation was statistically significant (p-value < 0.0001) 

with a substantial correlation of 0.71. Kendall tau rank correlation was statistically significant (p-

value <0.0001) with a moderate correlation of 0.54. The risk ratio for TBBPA IgA antibody 

production as an exposure variable and MOG IgA antibodies as an outcome variable was 14.29 

(CI: 5.20, 39.30) and statistically significant (p-value <0.0001). 

 

Figure 4 - Linear Relationships between TBBPA IgA and MOG IgA 

 

 

The two-way scatter plot evaluation for TBBPA and MOG for IgG immunological 

reactive demonstrates a positive monotonic relationship (Figure 5). Statistical analysis using 
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Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a moderate 

correlation of 0.50. Spearman’s rank correlation was statistically significant (p-value < 0.0001) 

with a moderate correlation of 0.55. Kendall tau rank correlation was statistically significant (p-

value <0.0001) with a moderate correlation of 0.39. The risk ratio for TBBPA IgG antibody 

production as an exposure variable and MOG IgG antibodies as an outcome variable was 5.40 

(CI: 2.06, 14.08) and statistically significant (p-value <0.0005). 

 

Figure 5 - Linear Relationships with IgG TBBPA and MOG IgG 

	
  

 

The two-way scatter plot evaluation for TBBPA and MOG for IgM immunological 

reactive demonstrates a positive monotonic relationship (Figure 6). Statistical analysis using 
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Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 

substantial correlation of 0.88. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.86. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.68. The risk ratio for TBBPA IgM 

antibody production as an exposure variable and MOG IgM antibodies as an outcome variable 

was 16.8 (CI: 6.15, 45.91) and statistically significant (p-value <0.0001). 

 

Figure 6 - Linear Relationships with IgM TBBPA and MOG IgM 
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Relationships between Tetrabromobisphenol-A and Aquaporin-4 

The two-way scatter plot evaluation for TBBPA and AQP4 for IgA immunological 

reactive demonstrates a positive monotonic relationship (Figure 7). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a moderate 

correlation of 0.70. Spearman’s rank correlation was statistically significant (p-value < 0.0001) 

with a moderate correlation of 0.67. Kendall tau rank correlation was statistically significant (p-

value <0.0001) with a moderate correlation of 0.50. The risk ratio for TBBPA IgA antibody 

production as an exposure variable and AQP4 IgA antibodies as an outcome variable was 10.29 

(CI: 4.04, 26.18) and statistically significant (p-value <0.0001). 

 

Figure 7 -  Linear Relationships between TBBPA IgA andAQP4 IgA 
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The two-way scatter plot evaluation for TBBPA and AQP4 for IgG immunological 

reactive demonstrates a positive monotonic relationship (Figure 8). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 

substantial correlation of 0.83. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.77. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.59. The risk ratio for TBBPA IgG 

antibody production as an exposure variable and AQP4 IgG antibodies as an outcome variable 

was 60.36 (CI: 8.32, 437.83) and statistically significant (p-value <0.0001). 

 

Figure 8 - Linear Relationships with IgG TBBPA and AQP4 IgG 
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The two-way scatter plot evaluation for TBBPA and AQP4 for IgM immunological 

reactive demonstrates a positive monotonic relationship (Figure 9). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 

substantial correlation of 0.88. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.84. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.67. The risk ratio for TBBPA IgM 

antibody production as an exposure variable and AQP4 IgM antibodies as an outcome variable 

was 75.6 (CI: 10.66, 536.27) and statistically significant (p-value <0.0001). 

 

Figure 9 -Linear Relationships with IgM TBBPA and AQP4 IgM 
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Relationships between Tetrabromobisphenol-A and Alpha-Synuclein 

The two-way scatter plot evaluation for TBBPA and Alpha-Synuclein for IgA immunological 

reactive demonstrates a positive monotonic relationship (Figure 10). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 

substantial correlation of 0.72. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.72. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.53. The risk ratio for TBBPA IgA 

antibody production as an exposure variable and Alpha-Synuclein IgA antibodies as an outcome 

variable was 18.57 (CI: 7.07, 48.80) and statistically significant (p-value <0.0001). 

Figure 10 - Linear Relationships between TBBPA IgA and Alpha-Synuclein IgA 
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The two-way scatter plot evaluation for TBBPA and Alpha-Synuclein for IgG 

immunological reactive demonstrates a positive monotonic relationship (Figure 11). Statistical 

analysis using Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) 

with a substantial correlation of 0.76. Spearman’s rank correlation was statistically significant (p-

value < 0.0001) with a moderate correlation of 0.63. Kendall tau rank correlation was 

statistically significant (p-value <0.0001) with a moderate correlation of 0.47. The risk ratio for 

TBBPA IgG antibody production as an exposure variable and Alpha-Synuclein IgG antibodies as 

an outcome variable was 18.22 (CI: 5.60, 59.33) and statistically significant (p-value <0.0001). 

Figure 11 - Linear Relationships with IgG TBBPA and Alpha-Synuclein IgG 
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The two-way scatter plot evaluation for TBBPA and Alpha-Synuclein for IgM 

immunological reactive demonstrates a positive monotonic relationship (Figure 12). Statistical 

analysis using Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) 

with a substantial correlation of 0.85. Spearman’s rank correlation was statistically significant (p-

value < 0.0001) with a substantial correlation of 0.85. Kendall tau rank correlation was 

statistically significant (p-value <0.0001) with a moderate correlation of 0.66. The risk ratio for 

TBBPA IgM antibody production as an exposure variable and Alpha-Synuclein IgM antibodies 

as an outcome variable was 75.6 (CI: 10.66, 536.27) and statistically significant (p-value 

<0.0001). 

Figure 12 - Linear Relationships with IgM TBBPA and Alpha-Synuclein IgM 

 

Relationships between Tetrabromobisphenol-A and S100B 
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The two-way scatter plot evaluation for TBBPA and S100B for IgA immunological reactive 

demonstrates a positive monotonic relationship (Figure 13). Statistical analysis using Pearson’s 

correlation coefficient was statistically significant (p-value < 0.0001) with a moderate correlation 

of 0.61. Spearman’s rank correlation was statistically significant (p-value < 0.0001) with a 

moderate correlation of 0.63. Kendall tau rank correlation was statistically significant (p-value 

<0.0001) with a moderate correlation of 0.46. The risk ratio for TBBPA IgA antibody production 

as an exposure variable and S100BIgA antibodies as an outcome variable was 20.96 (CI: 6.68, 

65.73) and statistically significant (p-value <0.0001). 

 

Figure 13 - Linear Relationships between TBBPA IgA and S100B IgA 
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The two-way scatter plot evaluation for TBBPA and S100B for IgG immunological 

reactive demonstrates a positive monotonic relationship (Figure 14). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a mild 

correlation of 0.35. Spearman’s rank correlation was statistically significant (p-value < 0.0001) 

with a moderate correlation of 0.53. Kendall tau rank correlation was statistically significant (p-

value <0.0001) with a mild correlation of 0.39. The risk ratio for TBBPA IgG antibody 

production as an exposure variable and S100B IgG antibodies as an outcome variable was 7.5 

(CI: 2.60, 21.96) and statistically significant (p-value <0.0001). 

 

Figure 14 - Linear Relationships with IgG TBBPA and S100B IgG 
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The two-way scatter plot evaluation for TBBPA and S100B for IgM immunological 

reactive demonstrates a positive monotonic relationship (Figure 15). Statistical analysis using 

Pearson’s correlation coefficient was statistically significant (p-value < 0.0001) with a 

substantial correlation of 0.92. Spearman’s rank correlation was statistically significant (p-value 

< 0.0001) with a substantial correlation of 0.82. Kendall tau rank correlation was statistically 

significant (p-value <0.0001) with a moderate correlation of 0.65. The risk ratio for TBBPA IgM 

antibody production as an exposure variable and S100B IgM antibodies as an outcome variable 

was 75.6 (CI: 10.66, 536.27) and statistically significant (p-value <0.0001). 

 

Figure 15 - Linear Relationships with IgM TBBPA and S100B IgM 
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Summary of Results 

There is a clear positive linear relationship that is statistically significant (p-value <0.0001) 

between TBBPA bound to human protein antibodies and myelin basic protein, myelin associated 

glycoprotein, aquaporin, and alpha-synuclein with all three forms of immunoglobulins: IgA, IgG, 

and IgM. The degree of correlation ranges from moderate to significant (Table 3). The highest 

degree of association is with IgM. These correlations coefficients ranged from 0.85–0.92.  

Table	
  3	
  -­‐	
  Summary of Results Risk Ratio and Correlation Coefficients	
  
Exposure	
  Antibody	
   Disease	
  Antibody	
   Risk	
  Ratio	
  of	
  lowest	
  tail	
  of	
  the	
  

95%	
  confidence	
  interval	
  	
  
r	
  

TBBPA	
  IgA	
   Myelin	
  basic	
  
protein	
  IgA	
  

3.90	
   0.68	
  

TBBPA	
  IgG	
   Myelin	
  basic	
  
protein	
  IgG	
  

5.55	
   0.80	
  

TBBPA	
  IgM	
   Myelin	
  basic	
  
protein	
  IgM	
  

7.01	
   0.87	
  

TBBPA	
  IgA	
   Myelin 
oligodendrocytic 
glycoprotein IgA	
  

5.20	
   0.68	
  

TBBPA	
  IgG	
   Myelin 
oligodendrocytic 
glycoprotein IgG	
  

2.06	
   0.50	
  

TBBPA	
  IgM	
   Myelin 
oligodendrocytic 
glycoprotein IgM	
  

6.14	
   0.88	
  

TBBPA	
  IgA	
   Aquaporin-4 IgA	
   4.04	
   0.70	
  
TBBPA	
  IgG	
   Aquaporin-4 IgG	
   8.32	
   0.83	
  
TBBPA	
  IgM	
   Aquaporin-4 IgM	
   10.65	
   0.88	
  
TBBPA	
  IgA	
   Alpha-synuclein 

IgA	
  
7.06	
   0.72	
  

TBBPA	
  IgG	
   Alpha-synuclein 
IgG	
  

5.6	
   0.76	
  

TBBPA	
  IgM	
   Alpha-synuclein 
IgM	
  

10.66	
   0.85	
  

TBBPA	
  IgA	
   S100B IgA	
   6.69	
   0.61	
  
TBBPA	
  IgG	
   S100B IgG	
   2.6	
   0.35	
  
TBBPA	
  IgM	
   S100B IgM	
   10.67	
   0.92	
  

All	
  data	
  is	
  statistically	
  significant	
  (p-­‐value	
  <.001	
  -­‐	
  <.0001)	
  
	
   	
  

There is a significant risk for the development of neurological antibodies with subjects 

that exhibited antibodies to TBBPA bound to human albumin. The study was powered for 
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correlation analysis (Appendix E) and not for a risk ratio analysis; thus, the data represents wide 

confidence intervals (Table 4). However, despite these wide confidence intervals, the risk ratio 

analysis was statistically significant (p-values <0.001 – 0.0001) and the lowest tail of the 

confidence interval identified a major risk. These risks ranged from a two-fold to a ten-fold 

increase in risk even when using the lowest tail of the 95% confidence interval. In summary, 

there is a significant linear association and risk in human subjects that exhibit antibodies to 

TBBPA with antibodies to a diverse list of neurological autoimmune target protein sites that 

include myelin basic protein, myelin-associated glycoprotein, aquaporin, and alpha-synuclein for 

IgA (Figure 16), IgG (Figure 17), and IgM (Figure 18). An analysis of correlations between IgA, 

IgG, and IgM immunoglobulins identified that IgM antibodies have the most significant 

reactions (Tables 5–7) 
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Table	
  4	
  –	
  Results	
  of	
  Risk	
  Ratios	
  

Exposure	
  Antibody	
  	
   Disease	
  Antibody	
   Risk	
  
Ratio	
  

95%	
  CI	
   P	
  value	
  

TBBPA	
  IgA	
   Myelin	
  basic	
  
protein	
  IgA	
  

13.33	
   3.90,	
  45.50	
   <0.0001	
  

TBBPA	
  IgG	
   Myelin	
  basic	
  
protein	
  IgG	
  

13.58	
   5.55,	
  33.21	
   <0.0001	
  

TBBPA	
  IgM	
   Myelin	
  basic	
  
protein	
  IgM	
  

22.4	
   7.01,	
  70.10	
   <0.0001	
  

TBBPA	
  IgA	
   Myelin 
oligodendrocytic 
glycoprotein IgA	
  

14.29	
   5.20,	
  39.30	
   <0.0001	
  

TBBPA	
  IgG	
   Myelin 
oligodendrocytic 
glycoprotein IgG	
  

5.40	
   2.06,	
  14.08	
   0.0005	
  

TBBPA	
  IgM	
   Myelin 
oligodendrocytic 
glycoprotein IgM	
  

16.8	
   6.15,	
  45.91	
   <0.0001	
  

TBBPA	
  IgA	
   Aquaporin-4 IgA	
   10.29	
   4.04,	
  26.18	
   <0.0001	
  
TBBPA	
  IgG	
   Aquaporin-4 IgG	
   60.36	
   8.32,	
  437.83	
   <0.0001	
  
TBBPA	
  IgM	
   Aquaporin-4 IgM	
   75.6	
   10.66,	
  536.27	
   <0.0001	
  
TBBPA	
  IgA	
   Alpha-synuclein 

IgA	
  
18.57	
   7.07,	
  48.80	
   <0.0001	
  

TBBPA	
  IgG	
   Alpha-synuclein 
IgG	
  

18.22	
   5.60,	
  59.33	
   <0.0001	
  

TBBPA	
  IgM	
   Alpha-synuclein 
IgM	
  

75.6	
   10.66,	
  536.27	
   <0.0001	
  

TBBPA	
  IgA	
   S100B IgA	
   20.95	
   6.68,	
  65.73	
   <0.0001	
  
TBBPA	
  IgG	
   S100B IgG	
   7.5	
   2.60,	
  21.96	
   0.0001	
  
TBBPA	
  IgM	
   S100B IgM	
   75.6	
   10.66,	
  536.27	
   <0.0001	
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Figure 16 – Scatter Matrix of IgA Correlations 
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Figure 17 - Scatter Matrix Graph IgG Correlations 
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Figure 18 - Scatter Matrix Graph IgM Correlations 
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Table	
  5	
  -­‐	
  Summary	
  of	
  IgA	
  Risk	
  Ratios	
  and	
  Correlation	
  Coefficients	
  
Exposure	
  Antibody	
   Disease	
  Antibody	
   Risk	
  Ratio	
  of	
  lowest	
  tail	
  of	
  the	
  95%	
  

confidence	
  interval	
  	
  
r	
  

TBBPA	
  IgA	
   Myelin	
  basic	
  protein	
  
IgA	
  

3.90	
   0.68	
  

TBBPA	
  IgA	
   Myelin 
oligodendrocytic 
glycoprotein IgA	
  

5.20	
   0.68	
  

TBBPA	
  IgA	
   Aquaporin-4 IgA	
   4.04	
   0.70	
  
TBBPA	
  IgA	
   Alpha-synuclein IgA	
   7.06	
   0.72	
  
TBBPA	
  IgA	
   S100B IgA	
   6.69	
   0.61	
  

All	
  data	
  is	
  statistically	
  significant	
  (p-­‐value	
  <.0001)	
  
	
  
	
  

Table	
  6	
  -­‐	
  Summary	
  of	
  IgG	
  Risk	
  Ratios	
  and	
  Correlation	
  Coefficients	
  
Exposure	
  Antibody	
   Disease	
  Antibody	
   Risk	
  Ratio	
  of	
  lowest	
  tail	
  of	
  the	
  95%	
  

confidence	
  interval	
  	
  
r	
  

TBBPA	
  IgG	
   Myelin	
  basic	
  protein	
  
IgG	
  

5.55	
   0.80	
  

TBBPA	
  IgG	
   Myelin 
oligodendrocytic 
glycoprotein IgG	
  

2.06	
   0.50	
  

TBBPA	
  IgG	
   Aquaporin-4 IgG	
   8.32	
   0.83	
  
TBBPA	
  IgG	
   Alpha-synuclein IgG	
   5.6	
   0.76	
  

TBBPA	
  IgG	
   S100B IgG	
   2.6	
   0.35	
  
All	
  data	
  is	
  statistically	
  significant	
  (p-­‐value	
  <.0001)	
  
	
  
	
  

Table	
  7	
  -­‐	
  Summary	
  of	
  IgM	
  Risk	
  Ratios	
  and	
  Correlation	
  Coefficients	
  
Exposure	
  Antibody	
   Disease	
  Antibody	
   Risk	
  Ratio	
  of	
  lowest	
  tail	
  of	
  the	
  95%	
  

confidence	
  interval	
  	
  
r	
  

TBBPA	
  IgM	
   Myelin	
  basic	
  protein	
  
IgM	
  

7.01	
   0.87	
  

TBBPA	
  IgM	
   Myelin 
oligodendrocytic 
glycoprotein IgM	
  

6.14	
   0.88	
  

TBBPA	
  IgM	
   Aquaporin-4 IgM	
   10.65	
   0.88	
  
TBBPA	
  IgM	
   Alpha-synuclein IgM	
   10.66	
   0.85	
  
TBBPA	
  IgM	
   S100B IgM	
   10.67	
   0.92	
  

All	
  data	
  is	
  statistically	
  significant	
  (p-­‐value	
  <.0001)	
  
 

54



55	
  	
  

Chapter 5: Discussion 

In this chapter, the results of the research study will be interpreted and examined, and 

inferences will be drawn from the data. The findings of the study will be stated, and a discussion 

on whether the outcomes of the study support the proposed hypotheses will be presented. The 

implications of the data and its contribution to the field of neurotoxicology, neuroimmunology, 

and environmental medicine will be evaluated. Implications for future research constructed on 

the output of the discovered data will be proposed. Scientific, clinical, and legislative 

recommendations will be formulated from the study outcomes and will be presented in this 

section. This chapter will conclude with an acknowledgement of the study’s limitations and a 

summary of the entire research study. 

Discussion 

Tetrabromobisphenol-A (TBBPA) is the most widely used flame retardant. Flame 

retardants are generally sprayed on furniture, mattress beds, children’s pyjamas, car seats, 

upholstery, carpets, and rugs in the United States of America. TBBPA may play a role in the 

epidemic of autoimmune disease. The goal of this research was to investigate whether any 

correlation or risk exists between the immunological reactivity to TBBPA, a key chemical used 

in most flame retardants, and the neurological autoimmune target sites that are associated with 

neurological autoimmune diseases with a diverse and specific list of antibodies with human 

serum samples.  

Ten fundamental research questions were investigated to evaluate the hypothesis that 

chemical reactivity to TBBPA can promote neurological autoimmunity. In this study, TBBPA 

immunological reactivity was used to investigate any association with neurological 

autoimmunity by looking at antibodies associated with five separate neurological target sites that 
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included myelin basic protein, myelin oligodendrocyte protein, S100B protein, alpha-synuclein, 

and aquaporin-4. These antibodies reflect the autoimmune target sites associated with multiple 

sclerosis, autoimmune demyelinating disorders, Parkinson’s disease, neuromyelitis optica, and 

inflammatory conditions of the brain and the peripheral nervous system. The outcome of each 

research question will be discussed in this section starting with research question #1.  

Research Question # 1: Can TBBPA bind to human albumin and induce 

immunological chemical reactivity as identified with TBBPA bound to albumin specific 

antibodies in human serum? Chemical molecules known as haptens can bind directly to self-

proteins, thereby creating new antigens in the immune system known as hapten-protein-adducts. 

Haptens can also indirectly bind to proteins after hepatic or extra-hepatic biotransformation from 

pro-haptens to haptens, generating hapten-protein-adducts. These hapten-protein-adducts lead to 

neoantigen formations, resulting in systemic T-cell and antibody immune responses (Kubicka-

Muranyi et al., 2013). The results of this study found clear outcomes that TBBPA can bind to 

human albumin and develop neoantigens that can be objectively captured by quantifying the 

TBBP bound to albumin antibodies with enzyme-linked immunosorbent assay (ELISA) 

methodology. Additionally, the spectrographic analysis of the conjugate was undertaken until 

there was an increase in absorption from 230 to 260nM. This was performed to confirm that 

haptenic chemicals were covalently linked to the protein carrier during the development of the 

ELISA plates. Furthermore, the development of specific antibodies was captured and quantified 

through optical density analysis. 

This finding provides a novel understanding of how fire-retardant chemicals may impact 

human health. It is understood that that immunological antibody response can occur only with 

proteins and not with chemical adjuncts alone. The novel concept that the commonly used 
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chemicals in our day-to-day lives, which were investigated in this study, all have the ability to 

bind to human proteins and change the primary structure of the protein provides further insight 

into how these chemicals may induce inflammation and autoimmune reactivity. The role that 

environmental xenobiotics and toxic agents play in the development of autoimmune diseases has 

been found with various mechanisms, such as the mechanisms of oxidative stress and 

mechanisms that induce immunological deletion, modification of gene expression, and 

immunological dysregulation (Rao & Richardson, 1999). The primary focus in the past was on 

known toxic agents, such as heavy metals, poisons, pesticides, and volatile compounds, that 

impact oxidative stress pathways (Lehmann, 2017). In this study, a specific investigation of how 

commonly encountered TBBPA may act as a trigger in the normal immunological response with 

the development of hapten-protein adducts independent of previous models of disease 

development was conducted. 

Research Question #2: Is there a correlation between TBBPA immunological 

reactivity with neurological autoimmunity to the nerve sheath proteins (myelin basic 

protein and myelin oligodendrocyte protein)? This study found a statistically significant 

correlation between TBBPA immunological reactivity and neurological autoimmunity to nerve 

sheath proteins, myelin basic protein (MBP), and myelin oligodendrocyte protein (MOG) for 

IgA, IgG, and IgM. Myelin is a phospholipid membrane that surrounds the axons of nerve cells 

to allow for the increased speed of nerve propagation in both the central and peripheral nervous 

system. MBP isoforms are essential for the formation of multi-lamellar sheaths of myelin that 

surround axons in combination with MOG (Vassall et al., 2015). 

Antibodies to MBP and MOG are associated with demyelinating diseases of the nervous 

system that include neuropathy, multiple sclerosis, ataxia, transverse myelitis, and other 
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inflammatory and autoimmune diseases of the nervous system (Peschl et al., 2017). Injury to the 

myelin sheath may lead to diverse clinical symptoms, such as weakness of muscles, loss of 

sensation, balance disorders, double vision, nerve pain, loss of bowel control, and involuntary 

urination. The clinical presentations from demyelination depend on the specific regions of the 

nervous system that have been damaged (Kinzel et al., 2017). MOG and MBP antibodies have 

been found to be an accurate biomarker for predicting multiple sclerosis progression from early 

patterns to progressed patterns of the disease (Berger et al., 2003). These antibodies have also 

been found to be predictive for determining the relapse in patients diagnosed with relapsing-

remitting multiple sclerosis (Rauer et al., 2006). 

In addition to the inflammatory demyelinating diseases of the nervous system, such as 

neuropathy and multiple sclerosis, some recent publications have found that the antibodies to 

MOG and MBP may represent a subtle inflammatory response in the brain and that they are 

associated with the impairment of general functions of the brain, such as focus, attention, 

concentration, and memory. In a study of rheumatoid arthritis patients, their levels of MOG and 

MBP antibodies and their association to cognitive function were compared. The study found that 

the levels of MOG and MBP antibodies were negatively associated with the delayed verbal 

recall, Stroop Color-Word, and N-Back Total scores and positively with Trail Making Test B. 

The study concluded that elevation of these antibodies’ levels is associated with an impaired 

cognitive function (Baptista et al., 2017). Another study examined the MOG and MBP antibody 

levels in the serum of 26 patients diagnosed with Alzheimer’s disease (AD) and 26 healthy 

controls. The study found that these antibodies were significantly higher in AD patients and 

suggested that the antibodies to myelin could serve as an early biomarker of AD in human 

subjects before the onset of dementia (Papuc et al., 2015). 
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The role that chemicals play in the destruction of myelin is an area of investigation in the 

field of neuroimmunology. The exposure to environmental toxins and heavy metals are a known 

cause of peripheral nerve diseases associated with the destruction of myelin (Katona et al., 

2017). In one study, 50 subjects exposed to pesticides and 25 subjects not exposed to pesticides 

were evaluated for the development of neurological symptoms and the presence of 

autoantibodies against neural proteins that included MOG and MBP. The study found that the 

subjects who were exposed to pesticides had developed neurological signs and symptoms of 

neural injury, and there was a 7.67-fold and 5.89-fold increase in antibody levels to MBP and 

MOG, respectively, in subjects who were chronically exposed to chemicals compared to subjects 

who were not. The correlation between MOG and MBP antibodies with the chemical bisphenol-

A found in plastic products and its target protein, protein disulphide isomerase, has been reported 

in the literature (Kharrazian & Vojdani, 2016). 

Studies specific to TBBPA have found that the chemical can act as a neurotoxin and 

induce cellular toxicity as well as disturb cellular dopamine secretion and alter 

acetylcholinesterase enzymatic activity (Liu et al., 2016). TBBPA was also recently found to 

cause neurotoxic and apoptotic responses in cultured mouse hippocampal neurons in vitro 

(Szychowski & Wójtowicz, 2016). Additionally, TBBPA was found to have induced apoptotic 

and neurotoxic effects in mouse neocortical cells. Another study found that TBBPA can induce 

neurotoxic effects, especially when challenged with oxygen-glucose deprivation (Ziemińska et 

al., 2012). 

This study identified an association between TBBPA and MOG and MBP antibodies, 

which had not been reported previously. The antibodies to myelin lead to the destruction of nerve 

sheaths that are necessary for healthy nerve transmission. These nerve sheath proteins were 
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originally thought of as a biomarker for demyelinating diseases, such as multiple sclerosis 

(Peschl et al., 2017). The elevation of the levels of these antibodies is used as a diagnostic and 

predictive biomarker for diseases, such as multiple sclerosis (Berger et al., 2003). However, 

further research has found that antibody-level elevations of MOG and MBP also occur in less 

devastating and clinically obvious diseases, such as subtle neuroinflammation and the cognitive 

decline found with subtle patterns of neurodegenerative disease (Papuc et al., 2015). In this 

study, the association with chemical, immunological reactivity to TBBPA with both MOG and 

MBP antibodies suggests that fire-retardant chemicals may play a role in the inflammation of the 

nerve sheath of neurons. These reactions may play a role in a diverse list of diseases on the rise 

that includes autism, multiple sclerosis, dementia, AD, and peripheral neuropathy. 

Research Question #3: What is the relative risk (risk ratio) for exposure to TBBPA 

that leads to immune reactivity and the development of autoimmunity against nerve sheath 

proteins (myelin basic protein and myelin oligodendrocytic protein)? The production of 

antibodies to TBBPA, MOG, and MBP are an acquired immune response. TBBPA antibodies 

may only occur from environmental exposure to TBBPA and are not intrinsically found in 

human serum. Additionally, autoantibodies to MOG and MBP do not occur until the immune 

system targets these myelin sheath proteins due to an autoimmune disease response. A risk ratio 

calculation was conducted with TBBPA antibodies as the exposure antibody and MOG and MBP 

antibodies as the disease antibodies. This study found that the relative risk for developing 

autoimmunity against nerve sheath proteins by individuals who exhibit TBBPA immunological 

reactivity ranges from 5.4 to 22.4 times the risk when compared to individuals who did not 

exhibit TBBPA immunological reactivity, depending on whether immunoglobulins A, G, or M 

were assessed. These findings were statistically significant with p-values <0.0001. The 
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confidence intervals were large for this risk ratio calculation. To conservatively estimate the 

relative risk using only the lower tail of the 95% confidence interval, the relative risk ranged 

from 2.06 to 7.01 times the risk when compared to individuals who did not exhibit TBBPA 

immunological reactivity, depending on whether immunoglobulins A, G, or M were assessed. 

These findings suggest that the exposure to TBBPA, leading to antibody production 

against TBBPA bound to albumin, promotes a significant risk of developing autoimmunity 

against nerve sheath proteins. Therefore, individuals who have elevated levels of TBBPA 

antibodies should be carefully evaluated for clinical signs and symptoms of demyelinating 

diseases. The symptoms of demyelinating diseases include numbness, pain, dizziness, loss of 

movement, sensory impairment, and cognitive decline. The signs of demyelination include 

nystagmus, upper and lower motor neuron signs, ataxia, pallanesthesia, and loss of brainstem and 

spinal cord reflexes, among others. The presence of these signs and symptoms suggest injury to 

myelin sheath nerve proteins, and this response can be confirmed by elevated levels of MOG 

and/or MBP antibody (Reindl et al., 2013). Additionally, for those who have confirmed the 

demyelinating disease and elevated levels of MBP and MOG antibodies, the investigation for 

environmental reactivity to TBBPA can be conducted with serum antibody testing and 

appropriate lifestyle modification to reduce fire retardant exposure.  

Research Question #4: Is there a correlation between TBBA immunological 

reactivity to S100B protein, the biomarker used to assess breakdown of the blood-brain 

barrier and neuroinflammation? This study found a statistically significant correlation 

between TBBPA immunological reactivity and S100B protein, the biomarker used to assess 

breakdown of the blood-brain barrier (BBB) and neuroinflammation with IgA, IgG, and IgM 

antibodies. Several researchers have labelled S100B as a candidate biomarker for blood-brain 
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barrier permeability and central nervous system damage (Sun et al., 2013). S100B protein is 

located in the central nervous system; it can pass through the blood-brain barrier and enter 

peripheral circulation upon injury to the brain or blood-brain barrier (Bloomfield et al., 2007). 

When the blood-brain barrier is destroyed, the astrocytic protein called S100B enters the 

bloodstream and over time, S100B antibodies develop in those individuals who have a persistent 

breakdown of the BBB (Choi et al., 2016). S100B is normally segregated in the brain and has a 

sequence of 10 amino acids that are not present in any other human protein, and therefore, has 

unique auto-antigenic properties. Hence, when the BBB breaks down, and S100B enters the 

blood, dendritic cells are likely to perceive these proteins as non-self-antigens and promote an 

autoimmune response to S100B (Marchi et al., 2013). S100B antibody is a highly sensitive 

marker for detecting the breakdown of the BBB and brain metastases in patients with lung 

cancer, using brain imaging (Choi et al., 2016).  

S100B is a calcium-binding protein that is expressed primarily by astrocytes, and it 

functions both as an intracellular regulator and an extracellular signal located in the blood-brain 

barrier (Santamaria-Kisiel et al., 2006). S100B has both neurotrophic and gliotrophic functions 

(Yardan et al., 2011). As an intracellular regulator, S100B promotes cell proliferation and 

migration and also acts to inhibit apoptosis and differentiation during cellular development and 

neuronal repair. As an extracellular regulator and extracellular factor, S100B engages receptors 

for advanced pro-proliferative or pro-differentiative responses, depending on the concentration 

attained by the protein and the surrounding microenvironment (Donato et al., 2009). Nanomolar 

concentrations of S100B in vitro enhance the survival of neurons and stimulates neurite 

branching (Donato, 2001). However, micromolar concentrations of S100B in vitro promote a 

neuroinflammatory response and activate the receptor for advanced glycation end products 
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(RAGE), inducing apoptosis by promoting reactive oxygen species, cytochrome C release, and 

activating the caspase cascade (Sen & Belli, 2007). 

Additionally, the levels of S100B have been shown to potentially determine both the 

extent of the injury and predict the prognosis of individuals who have suffered a traumatic brain 

injury (Wiesmann et al., 2010). In fact, S100B has been found to increase in serum within six 

hours of traumatic brain injury (Vos et al., 2010). In one study, the sensitivity of determining the 

prognosis of recovery from traumatic brain injury using serum S100B was 80% (Rainey et al., 

2009). S100B serum levels have also been found to reflect the significance of brain injury from 

acute stroke and predict the prognosis of acute stroke patients (Beer et al., 2010). In addition, the 

release of S100B can activate the surrounding microglia and promote neuroinflammatory 

damage to the brain, which may serve as a contributing factor to neurodegenerative diseases 

(Rothermundt et al., 2003). 

In addition to the elevation in levels of S100B in cases of acute stroke and acute 

traumatic brain injury, this protein may also play a role in chronic neurodegenerative diseases. 

Significantly increased levels of cerebrospinal fluid S100B have been identified in patients 

suffering from AD and frontotemporal lobe dementia (Fox & Freeborough, 1997; Green et al., 

1997). It has been shown that ß-amyloid found in AD stimulates the synthesis of both S100B 

mRNA and S100B protein in astrocytes (Pena et al., 1995). Additionally, it has been suggested 

that extracellular S100B may play a neuroinflammatory role in activating astrocytes and 

surrounding microglia. Higher levels of S100B antibodies have been identified in the serums of 

patients diagnosed with Lewy-body associated dementias compared to healthy controls (Maetzler 

et al., 2011). Furthermore, S100B has been found to correlate with brain atrophy in AD; this 

finding suggests that S100B may play a role in neurodegenerative diseases (Petzold et al., 2003). 
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It has also been suggested that S100B is a marker for disease progression in Parkinson’s 

disease (Schaf et al., 2005). In a mice study, where the neurotoxin 1-4-methyl-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) was used to induce Parkinsonism, S100B was found to be elevated 

after neuronal damage (Muramatsu et al., 2003).	
  Furthermore, S100B has been used as a 

biomarker for sleep-related neuroinflammation in Parkinson’s disease (Carvalho et al., 2015). 

These findings may support the correlation that was also found in this study linking TBBPA with 

alpha-synuclein, which is the target protein of Parkinson’s disease. When BBB loses its integrity, 

the brain becomes vulnerable to antigens, chemicals, and circulating antibodies from the 

peripheral immune response that have the potential to induce pathogenic insults to the brain, 

including autoimmune and inflammatory responses (Vincnet et al., 2011). 

This study found an association between TBBPA immunological reactivity and S100B 

protein, the biomarker used to assess the breakdown of the BBB. S100B is the surrogate marker 

for the disruption of the BBB. The BBB is found to be compromised in many patterns, including 

traumatic brain injury, neurodegenerative diseases, and stroke. The underlying response to the 

production of S100B antibodies is the activation of the astrocytes in the BBB from destructive 

and inflammatory response, leading to the release of S100B into the bloodstream, and then, the 

development of antibodies to S100B. The association with S100B antibodies, in this study, and 

TBBPA antibodies suggests that the chemical found in flame retardants may have a role in the 

systemic inflammatory response of the brain that is associated with the activation of astrocytes 

and impairment of the BBB’s integrity. The compromising of the BBB barrier may lead to 

significant exposure of the brain to toxic chemical insults and the promotion of diseases in the 

brain (Zheng, 2001). Although the association is not causation, it appears that the immunological 

reactivity to TBBPA may play some role with the biomarker S100B associated with the 
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impairment of the BBB. The breach of the BBB can lead to a further significant risk of chemical 

exposures to target proteins in the brain that have been found to correlate with immunological 

reactivity in this study, including MOG, MBP, AQP4, and alpha-synuclein. The exact 

pathophysiological mechanism of BBB breakdown is unknown from the study design of this 

investigation; however, research designs to further investigate the precise role of TBBPA and its 

impact on the BBB have been warranted due to the outcomes of this research. 

Research Question #5: What is the relative risk (risk ratio) for exposure to TBBPA 

that leads to immune reactivity and the development of neuroinflammation and breakdown 

of the blood-brain barrier (S100B)? The production of antibodies to TBBPA and S100B are an 

acquired immune response. TBBPA antibodies may only occur from environmental exposure to 

TBBPA; they are not intrinsically present in the human serum. Additionally, the autoantibodies 

to S100B do not occur until the immune system targets these BBB proteins due to an 

inflammatory response. A risk ratio calculation was conducted with TBBPA antibodies as the 

exposure antibody and S100B antibodies as the disease antibodies. This study found that the 

relative risk for developing neuroinflammation and breakdown of the BBB, which leads to S100 

antibodies in individuals who exhibited TBBPA immunological reactivity, ranges from 7.5 to 

75.6 times the risk when compared to individuals who did not exhibit TBBPA immunological 

reactivity, depending on whether immunoglobulins A, G, or M were assessed. These findings 

were highly statistically significant with p-values <0.0001. The confidence intervals were large 

for this risk ratio calculation. To conservatively estimate the relative risk using only the lower 

tail of the 95% confidence interval, the relative risk ranged from 2.6 to 10.66 times the risk when 

compared to individuals who did not exhibit TBBPA immunological reactivity, depending on 

whether immunoglobulins A, G, or M were assessed.   
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These findings suggest that exposure to TBBPA leads to antibody production against 

TBBPA bound to albumin and promotes a significant risk of developing neuroinflammation and 

breakdown of the BBB. Individuals who have S100B antibodies should be concerned about 

chemicals that have been found to be directly neurotoxic to the brain, such as TBBPA (Liu et al., 

2016). Furthermore, those who have TBBPA antibodies should consider having their S100B 

levels checked to determine if they have activated the astrocyte response involving S100B 

release. The findings of either elevated levels of S100B antibodies or elevated levels of TBBPA 

antibodies raise concern regarding the vulnerability of the brain to toxic agents despite the exact 

underlying mechanism of pathology. 

Research Question #6 Is there a correlation between TBBPA immunological 

reactivity and alpha-synuclein, the protein aggregate marker for neurodegenerative 

diseases, such as Parkinson’s disease? This study found a statistically significant correlation 

between TBBPA immunological reactivity and alpha-synuclein, the protein aggregate marker for 

neurodegenerative diseases, such as Parkinson’s disease (PD) with IgA, IgG, and IgM. PD is the 

second most common neurodegenerative disease in the world, and the prevalence of PD is 

increasing rapidly. The majority of PD cases are sporadic and not associated with familial PD, 

which only accounts for 5% of the cases (Liu et al., 2016). 

The exposure to various industrial and environmental chemicals, including flame 

retardants, have been recognized in the etiopathogenesis of PD (Caudle, 2015). Mice were 

exposed to a brominated flame retardant called hexabromocyclododecane (HBCDD) for six 

weeks, and neurotoxic was reported to impact the dopamine circuits in the brain (Pham-Lake et 

al., 2017). Another study exposed brominated flame retardants during the brain growth in mice, 

and a single oral dose of the chemical led to alterations of proteins, including alpha-synuclein, in 
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the brain involved with neurodegeneration (Alm et al., 2006). Additionally, the PD subjects were 

found to have compromised hepatic conjugation with glucuronic acid and statistically significant 

reduced levels of conjugated bisphenol-A compared to other controls (Landolfi, 2017). TBBPA 

shares the same hepatic biotransformation pathways as BPA, and the impaired conjugation of 

these chemicals lead to increased risk of oxidative stress and inflammation (Nakagawa et al., 

2007). The impaired conjugation of these chemicals in subjects with PD can make them 

extremely vulnerable to TBBPA exposure.  

Alpha-synuclein is an intracellular protein that supports neuron synaptic transmission and 

the release of neurotransmitters in the presynaptic vesicle under normal conditions (Cheng et al., 

2011). Alpha-synuclein can misfold and aggregate in the extracellular regions under various 

pathological mechanisms; it is the hallmark protein aggregate in PD. The aggregation of alpha-

synuclein can be neurotoxic by promoting oxidative stress and impairing vesicle trafficking, 

thereby promoting neurodegenerative changes in the brain (Xu et al., 2016). Once alpha-

synuclein aggregates in the extracellular space, the humoral immune system produces antibodies 

against these protein targets, leading to the elevation in the levels of alpha-synuclein antibodies 

in the serum (Orr et al., 2005). 

Alpha-synuclein antibodies play a protective role by attaching to these protein aggregates 

for immune cells to engulf them and limit their toxic effects on the surrounding neurons 

(Ingelsson et al., 2016). In studies done on mice, alpha-synuclein vaccinations induced reactive 

antibodies that reduced the level of alpha-synuclein aggregation associated with 

neurodegenerative changes (Masliah et al., 2005). Extracellular alpha-synuclein is cleared by 

microglial cells when alpha-synuclein antibodies specifically target them, and thus, reduce their 

neurotoxic actions on the surrounding cells (Lindstrom et al., 2014). Exogenously produced 
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antibodies to alpha-synuclein can reduce alpha-synuclein aggregate accumulation and reduce the 

oxidative and inflammatory response that they induce (Gruden et al., 2012).  

The identification of alpha-synuclein antibodies occurs with the accumulation of these 

proteins in the extracellular space associated with neurodegenerative disease (Lee et al., 2016). 

Evidence continues to illustrate that the antibodies measured are identifiable in the serum, and 

they can be used as a sensitive biomarker in alpha-synucleinopathies (Yanamandra et al., 2001; 

Papachroni et al., 2007). In one study, PD patients exhibited a 400–800% increase in the 

measurements of alpha-synuclein antibodies compared to non-disease controls that changed 

during the progression of the disease. Non-disease subjects had a narrow distribution of antibody 

levels throughout the study (Yanamandra et al., 2001). Another study found that 65% of the 

subjects with PD had elevated levels of alpha-synuclein antibodies (Papachroni et al., 2007). A 

clear understanding of neurotoxicity and the guidelines for neurotoxicity laboratory tests are 

currently being developed to address the contribution of neurotoxic chemicals, including fire-

retardant chemicals, to the development of neurodegenerative diseases, such as PD and AD 

(Giordano & Costa, 2012). The outcomes of this study may contribute to neurotoxic laboratory 

tests involving diseases such as PD in the future. 

This study found an association between chemical, immunological reactivity to TBBPA 

in the form of serum antibodies and antibodies to alpha-synuclein, the target protein aggregate 

biomarker of PD. The development of PD involves several decades, and various stages of the 

disease have been identified. Although most healthcare providers associate a resting tremor as an 

early sign of PD, it is, in fact, a finding that occurs in the last stages of the disease. Early markers 

of the PD include impaired smell, muscle tightness, and constipation (Rietdijk, 2017). These 

patterns occur because the protein, alpha-synuclein, which is normally found in healthy neurons, 
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aggregates together and promotes neuronal death. Recent advances in biomarker testing have 

found that as alpha-synuclein aggregates, the immune system produces antibodies to these 

proteins that can be identified in serum samples as alpha-synuclein antibodies (Lee et al., 2016) 

even before the clinical presentations can become evident. The strong linear correlation between 

alpha-synuclein antibodies and antibodies to TBBPA suggest that TBBPA may play some role in 

the neurodegenerative process. Therefore, individuals who have been diagnosed with PD should 

consider being tested with TBBPA antibodies, and if immunological reactivity to TBBPA is 

identified, lifestyle changes to reduce the exposure of fire retardants in their household and daily 

activities should be considered. As stated earlier, it is clear that TBBPA is directly harmful to 

dopaminergic centers of the brain in animal studies and that patients with PD have impaired 

biotransformation pathways to metabolize chemicals such as TBBPA from their bodies. These 

findings suggest that TBBPA exposure may be a risk factor in the development of PD. Further 

research is warranted to identify if a direct causal relationship exists, and if so, what is the exact 

pathophysiology of this relationship.  

 

Research Question #7: What is the relative risk (risk ratio) for exposure to TBBPA 

that leads to immune reactivity and the development of protein aggregate antibody 

biomarkers for neurodegenerative diseases such as Parkinson’s (alpha-synuclein)? 

Antibodies to TBBPA and alpha-synuclein are an acquired immune response. TBBPA antibodies 

may only occur from environmental exposure to TBBPA and are not intrinsic to human serum. 

Additionally, autoantibodies to alpha-synuclein do not occur until the immune system targets 

aggregation of these proteins due to a neurodegenerative process (Ingelsson, 2016). A risk ratio 

calculation was conducted with TBBPA antibodies as the exposure antibody and alpha-synuclein 
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antibodies as the disease antibodies. This study found that the relative risk for developing alpha-

synuclein antibodies with individuals that exhibit TBBPA immunological reactivity ranges from 

18.22–75.6 times the risk when compared to individuals who do not exhibit TBBPA 

immunological reactivity depending on whether immunoglobulin A, G or M was assessed. These 

findings were statistically significant (p <0.0001). The confidence intervals were large for this 

risk ratio calculation. To conservatively estimate the relative risk using only the lower tail of the 

95% confidence interval, the relative risk ranged from 5.6–10.66 times the risk when compared 

to individuals who do not exhibit TBBPA immunological reactivity depending on whether 

immunoglobulin A, G, or M was assessed.   

These findings suggest that exposure to TBBPA, which leads to antibody production 

against TBBPA bound to albumin, promotes a significant risk of developing alpha-synuclein 

antibodies. Therefore, if an individual has developed antibodies to TBBPA, careful clinical 

examination for early patterns of PD should be conducted with a neurological exam that includes 

findings hypometric movements, loss of arm swing during ambulation, loss of smell, resting 

tremor, and loss of postural reflexes. Additionally, careful evaluation of early symptoms of PD, 

such as joint stiffness, depression, slowness, clumsiness, poor balance, and chronic constipation, 

should be evaluated. Immunological reactivity to TBBPA may induce risk for the development 

of PD, and these findings may be a useful marker in the early stages of the disease. Careful 

examination of early signs and symptoms of PD with those who have TBBPA antibodies may 

help identify early stages of PD and identify a potential risk factor. 

Research Question #8: Is there a correlation with TBBPA immunological reactivity and 

Aquaporin-4 water-channel receptors, the target protein for autoimmune reactivity for 

neuromyletis optica?  
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This study found a statistically significant correlation between TBBPA immunological reactivity 

and aquaportin-4 (AQP4) water channel receptors antibodies, the target protein for autoimmune 

reactivity to neuromyelitis optica and neuromyelitis optic spectrum disorder with IgA, IgG, and 

IgM. AQP4 is a water-channel protein and functions to support fluid homeostasis, removal of 

waste, calcium signaling, osmosensation, water homeostasis, and regulation of extracellular 

space volume in central and peripheral nervous tissues (Nagelhus & Ottersen, 2013). 

The autoimmune response against AQP4 with autoantibodies can impact both the central 

nervous system and bodily systems outside the brain. In extreme cases of AQP4 autoimmunity, 

there is severe destruction of the visual pathways and the spinal cord due to the high amount of 

AQP4 water channel proteins in these tissues. (Nagelhus & Ottersen, 2013). This pattern has 

been associated with the neurological autoimmune disease called neuromyleitis otpica (NMO), 

as the initial clinical presentation of the autoimmune response leads to the clinical presentation of 

visual and spinal cord clinical findings (Papadopoulos et al., 2010). Further understandings of 

the AQP4 autoimmune response has led to the realization that these water channel proteins are 

also found in other regions of the central nervous system. The autoimmune response to AQP4 

target proteins is not just limited to the visual pathways and the spinal cord but also to a spectrum 

of clinical presentations due to the distribution of AQP4 throughout the nervous system. This 

diverse response has been termed neuromyeltis optical spectrum disorders (NMOSD) 

(Wingerchuck et al., 2007). 

Antibodies to AQP4 cross the blood-brain barrier through endothelial transcytosis and 

bind the AQP4 water channel membrane proteins. This selective autoimmune binding induces 

destruction of the blood-brain barrier and injure myelin nerve sheaths by cytotoxic and 

complement immunological responses (Misu et al., 2007). Once the blood-brain barrier is 
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breached, there is massive infiltration of leukocytes into the brain, leading to aggressive nerve 

tissue destruction. Antibodies against the target protein AQP4 represent the key target protein for 

NMO and NMOSD and play a key role in the pathophysiology of the disease (Papadopoulos |& 

Verkman, 2012). There is a 73% sensitivity and 91% specificity for autoimmune destruction of 

the nervous system with the characteristic patterns of NMO with elevated AQP4 antibodies 

(Lennon et al., 2007). AQP4 antibodies are highly specific (85%–99%) for NMO when 

significantly elevated and can be detected in sera of most patients (68%–91%) (Papadopoulos et 

al., 2012). AQP4 antibodies are specific to the disease process, and the levels of the antibodies 

fluctuate as the severity of the clinical findings of the disease change (Takahashi et al., 2007). 

Furthermore, AQP4 antibodies can be used to monitor disease activity and determine the 

potential for relapse and the efficacy of disease treatment (Jarius et al., 2008).  

AQP4 target proteins are also found outside the central nervous system in the peripheral 

tissues of the body, such as the organs, the intestinal mucosa, the respiratory airways, and 

muscles tissues. (Papadopoulos & Verkman, 2012). Antibodies to AQP4 induce immunological 

responses to these peripheral tissues as well and lead to a diverse list of subtle or progressed 

symptoms. (Wingerchuk et al., 2007). These reactions throughout the body have expanded the 

categorization of the AQP4 autoimmune reactivity to NMSOD (Rosales & Kister, 2016). 

Autoimmune reactions against AQP4 target proteins in the placenta have been found to play a 

role in miscarriages. Subjects with seropositive AQP4 IgG antibodies have been found to have 

increased rates of miscarriage (De Falco et al., 2007; Reuss et al., 2009; Saadoun et al., 2013). 

AQP4 antibodies also target specific neuroinflammation in the cerebral aqueduct and have been 

reported in cases of obstructive hydrocephalus (Owler et al., 2010). The AQP4 protein is also 

found to be a target for autoimmune responses in the organ of corti in the inner ear; it plays a role 
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in autoimmune induced hearing loss (Jarius et al., 2013). Animal studies have found that AQP4 

proteins play a role in osmotic water fluxes in the inner ear, and autoimmune responses against 

these water-channel proteins induce deafness (Li & Verkman, 2001). The diverse location of 

AQP4 water-channel proteins leads to a diverse list of clinical symptoms when antibodies are 

produced against them. These autoimmune reactions can vary in intensity and lead to spectrum 

that includes subtle or non-clinical symptoms all the way to progressed states of debilitation 

autoimmune diseases such as NMO and NMOSD. 

Although significantly elevated AQP4 antibodies are the diagnostic laboratory marker for 

NMO and NOMSD, environmental chemicals such as TBPBPA may bind to serum albumin and 

have the potential to promote subtle immunological responses against water-channel proteins 

without expression into an end-stage disease. AQP4 antibodies vary according to the intensity of 

the autoimmune response (Takahashi et al., 2007). It is likely that many of the healthy subjects 

in our study with varying elevations of AQP4 antibodies will have a subtle degree of 

neuroinflammation against aquaporin water-channels. 

This study found an association between immunological reactivity to TBBPA and AQP4 

antibodies. AQP4 antibodies, when extremely elevated, are the critical biomarkers used to 

diagnose NMO (Wingerchuck et al., 2007). These antibodies may be accompanied by symptoms 

and signs of demyelination in the visual pathways and/or the spinal cord. The clinical 

presentation of demyelination and the elevated levels of AQP4 antibodies together fulfill the 

established diagnostic criteria for NMO (Patterson & Goglin, 2017). However, despite the 

typical criteria for the diagnosis of NMO, researchers have also found that AQP4 target proteins 

are located throughout the central and peripheral nervous system, and autoimmune reactivity to 

AQP4 can lead to a diverse list of symptoms unrelated to just demyelination of the spinal and 
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visual pathways associated with NMO (Kim et al., 2017). Additionally, various levels of AQP4 

antibodies can be associated with multiple degrees of neuroinflammation and not always 

associated with an extreme clinical presentation of demyelination disease (Takahashi et al., 

2007). The findings of this study show a strong, positive linear correlation between the degree of 

immunological reactivity to TBBPA and the degree of immunological reactivity to AQP4 target 

proteins. This suggests that that immune responsiveness to TBBPA may play some role in the 

neuroinflammatory, and autoimmune response found with diseases such as NMO and NMOSD. 

Further research is needed to determine if a causal role exists between TBBPA exposure and the 

development of NMO and NMOSD and what the mechanisms of pathophysiology of this flame-

retardant chemical are to AQP4 associated autoimmune diseases.  

Research Question #9: What is the relative risk (risk ratio) for exposure to TBBPA that 

leads to immune reactivity and against the autoimmune target protein of neuromyleitis 

optica (aquaporin-4 antibodies)? Antibodies to TBBPA and aquaporin-4 are an acquired 

immune response. TBBPA antibodies may only occur from environmental exposure to TBBPA 

and are not intrinsic to human serum. Additionally, autoantibodies to aquaporin-4 do not occur 

until the immune system targets these water-channel proteins in the blood-brain barrier 

(Ingelsson, 2016). A risk ratio calculation was conducted with TBBPA antibodies as the 

exposure antibody and aquaporin-4 antibodies as the disease antibodies. This study found that 

the relative risk for developing aquaporin-4 antibodies with individuals who exhibit TBBPA 

immunological reactivity ranges from 10.29–75.6 times the risk when compared to individuals 

who do not exhibit TBBPA immunological reactivity depending on whether immunoglobulin A, 

G, or M was assessed. These findings were highly statistically significant with p-values <0.0001. 

The confidence intervals were large for this risk ratio calculation. To conservatively estimate the 
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relative risk using only the lower tail of the of the 95% confidence interval, the relative risk 

ranged from 8.32–10.65 times the risk when compared to individuals who do not exhibit TBBPA 

immunological reactivity depending on whether immunoglobulin A, G, or M was assessed. 

These findings suggest that exposure to TBBPA, which leads to antibody production 

against TBBPA bound to albumin, promotes a significant risk of developing breach of water-

channel proteins of the blood-brain barrier and promote autoimmune reactions against the target 

protein associated with NMO. The outcomes of this risk ratio suggest that individuals who have 

elevated TBBPA antibodies should be carefully screened for symptoms of NMO, such as loss or 

blurriness of vision, changes in color perception in one eye compared to the other eye, weakness 

or paralysis of the limbs, uncontrollable vomiting or hiccups, and numbness in various regions of 

the body. Individuals with elevations of TBBPA antibodies should also be evaluated for clinical 

signs of NMO with a detailed neurological examination. Examination findings of NMO include 

upper motor neuron signs, positive pathological reflexes, dysconjugate gaze, gaze-evoked 

nystagmus, blindness, and scotomas. Immunological reactivity to TBBPA can be a substantial 

risk factor for the target protein of NMO and NMOSD. 

Research Question #10: Are there any differences in chemical immune responses 

between IgA, IgG, and IgM? An antibody is also known as an immunoglobulin (Ig). There are 

three forms of immunoglobulins or antibodies: immunoglobulin A (IgA), immunoglobulin G 

(IgG), and Immunoglobulin M (IgM). These immunoglobulins all serve to tag foreign proteins 

such as bacteria and viruses as part of the immune response against foreign organisms. 

Antibodies can also occur against one’s own body, which results in the development of 

autoimmune disease. The functions of immunoglobulins are generally the same, but the three 

different immunoglobulins occur in various tissues, and some forms of immunoglobulins are also 
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found more specifically with various diseases and immunological responses. IgA responses 

occur in the intestinal and oral mucosa tract and typically with interactions that happen in the 

gastrointestinal tract, oral cavities, or the respiratory passages. IgG responses are found in all 

bodily fluids and typically with delayed exposures. IgM antibodies are detected in the blood, and 

lymph fluid and typically reflect the initial response against antigens. A fundamental question in 

this study was to determine if there were any notable differences between IgA, IgG, or IgM for 

TBBA bound to human albumin.  

The study results revealed moderate-to-high degrees of correlation between the IgM, IgG, 

and IgA antibody levels against TBBPA and neurological autoimmune target sites (Tables 5-7). 

However, the study also found that the IgM antibodies have the most notable correlation for all 

reactions. Earlier studies also offer evidence that immune response to haptenic chemicals brings 

about a higher production of IgM antibodies than IgG or IgA (de Guercio et al., 1974; Onoue et 

al., 1965). This confirms the previous findings and suggests that immunological reactivity with 

IgM may be the most sensitive antibody to evaluate chemical neoantigen associations, and these 

reactions typically occur in the blood or lymph fluid of the subjects. 

Immunological testing of various forms of antibodies can be expensive; however, 

identifying which immunoglobulin has the highest degree or reactivity with neoantigens, such as 

TBBPA bound to albumin, can provide data that can help determine which immunoglobulin to 

test that will make cost restrictions of future research more feasible. This study generated similar 

results for all the three forms of immunoglobulins. However, IgM was most reactive, which 

suggests that the immunological response to the TBBPA and various neurological autoimmune 

target proteins involve the mucosal immune response and immune responses found in blood and 
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lymph regions of the body. However, if only one form of immunoglobulin can be tested due to 

feasibility, IgM testing would be preferred.  

Furthermore, testing three different forms of immunoglobulins with the same variables 

provide an indirect form of independent analyses. Each enzyme-linked immunoassay analysis 

(ELISA) in the laboratory is entirely independent of the other type of immunoglobulin ELISA 

analysis. The design of this study to evaluate all three forms of immunoglobulins with the same 

variable provides further cross-validation of the correlations found within this investigation. 

Implications 

The outcomes of this research may support the decisions made in respect of those 

suffering from neurological diseases, as to whether reducing flame retardant exposure is an 

environmental factor for consideration. Additionally, this study can be used to support the 

development of safety regulations and identify potential health concerns for current mandatory 

flame-retardant legislation. The outcomes of this study demonstrated the statistically significant 

correlation of p-values <0.0001 and correlation coefficients ranging from 0.68–0.92 linking 

immune reactivity to TBBPA with various target sites of the nervous system, which are 

associated with a diverse list of neurological diseases. Although correlation analysis does not 

determine whether TBBPA is causative, it does demonstrate that individuals with neurological 

autoimmunity have associative immune reactivity to TBBPA.  

The association between TBBPA and autoimmune reactivity to various neurological 

disease target sites may occur for three theoretical possibilities:  

1. It is possible that TBBPA is, in fact, a causative agent in the development of 

neurological disease. 
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2. The association between TBBPA and neurological disease is not causative, but there 

are common underlying physiological mechanisms between autoimmune neurological diseases 

and chemical, immunological reactivity. 

3. There is no physiological mechanism involved in the association between TBBPA and 

neurological disease, and there is no causative role.  

If an assumption is made that the associations in this study are, in fact, causative, it would 

suggest that immunological reactivity to TBBPA is a key factor in the development of 

neurological disease. TBBPA can act as a neurotoxin and induce cellular toxicity as well as 

disturb cellular dopamine secretion and alter acetylcholinesterase enzymatic activity (Liu et al., 

2016). TBBPA was recently found to cause neurotoxic and apoptotic responses in cultured 

mouse hippocampal neurons in vitro (Szychowski & Wójtowicz, 2016). Additionally, TBBPA 

was found to have induced apoptotic and neurotoxic effects on mouse neocortical cells. Another 

study found that TBBPA may produce neurotoxic effects, especially when challenged with 

oxygen-glucose deprivation (Ziemińska et al., 2012). The outcomes of this study cannot 

determine that the neurotoxic effects of TBBPA are causative in the development of antibodies 

to neurological disease target sites; however, the correlation outcomes identified in this study 

warrant further investigation.  

The second possibility for the association between TBBPA and neurological disease is 

that the association is not causative, but rather there are common underlying physiological 

mechanisms between neurological diseases and chemical, immunological reactivity. Exposure to 

TBBPA leads to a distribution of the chemical throughout the body. Once the chemical enters the 

systemic circulation, it can be detected in serum samples. TBBPA is then converted into a water-

soluble metabolite by phase I and phase II hepatic biotransformation pathways, after which it is 
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excreted through the urine. Chemicals, such as TBBPA, also have the potential to bind to various 

proteins in the body, such as albumin, while they are in circulation. When chemicals bind to a 

protein, they change its allosteric structure and can act as new antigens to the immune system. 

When this occurs, the humoral system produces antibodies against these chemical-bound 

neoantigens.	
  There are two plausible mechanisms in which the association with TBBPA and 

neurological antibodies are due to associative physiological pathways and not from a causative 

relationship. First, subjects who have a neurological disease may have compromised hepatic 

biotransformation pathways, leading to increased TBBPA levels and neurological antibodies 

from impaired chemical clearance. This physiological mechanism will lead to a correlation 

between the variables in this study, but the association would not be causative.  

Another possible non-causative physiological mechanism of this study would be related 

to concurrent loss of chemical tolerance found with neurological diseases. In this study, we did 

not measure the quantity of chemical in the serum, but we checked the levels of chemical 

antibodies. Antibodies to chemicals occur when the immune system reacts against chemicals. 

The reaction to chemicals is an immunological response. An exaggerated response to chemicals 

can occur with loss of oral tolerance. In this scenario, the immune system has an overzealous 

response to chemicals. Loss of oral tolerance is a co-occurrence with the neurological 

autoimmune disease. In this study, the association between both chemical and neurological 

antibodies may not be associated with a causative model but with the loss of oral tolerance that 

can occur in neurological disease, leading to the association outcomes found in this study. 

It should be noted, even if TBBPA immunological reactivity is not a causative variable in 

the development of antibodies against neurological disease target sites, both impaired 

biotransformation activity or loss of tolerance activity found with non-causative pathways of 
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association are still clinically relevant. The immunological response to an environmental antigen 

is a concern for individuals who suffer from any form of autoimmune disease. Chemical 

responses to antigens promote destructive immunological responses. The strong correlation with 

immunological reactivity to TBBA and neurological autoimmune disease antibodies still suggest 

that exposure to TBBPA is a concern for subjects suffering from autoimmune neurological 

diseases, despite the fact the correlation may not be causative. Therefore, restriction of TBBPA 

exposure should be considered for individuals at risk. Immunologically reactivity to a specific 

chemical in a subset of individuals raises health and safety concerns.  

The third possibility that may explain the associations found in this study is that no 

physiological mechanism is associated with the associations between TBBPA and neurological 

disease, and there is no causative role. It is possible that the actual findings of the study were null 

and type I errors were obtained. However, as we had made a Bonferroni adjustment to the p-

value to account for a false discovery rate for multiple comparisons and the results of the p-value 

was <0.0001, it is unlikely, but still possible. The possibility for experimental error is also 

always a possibility; however, laboratory standard operations procedures was designed very 

carefully to avoid this possibility as much as possible. As in any study, the findings of this 

experiment should be repeated by other investigators to determine if the findings are 

reproducible.  

Despite the clinical implications of this study for subjects suffering from a neurological 

disease associated with the target proteins used in this study, there are implications for 

determining chemical risks by measuring antibodies to chemicals. A novel feature of this study 

was the association between antibodies formed to TBBPA bound to protein and not merely the 

detection of TBBPA levels. Detectible levels of TBBPA in serum and urine samples are an 
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expected finding for most of the general population. Antibodies produced to TBBPA bound to 

protein, however, are an independent feature of only a subset of the population. In a previous 

study on blood donors, it was reported that antibodies to TBBPA bound to albumin only occur in 

16% of the samples (Vojdani et al., 2015). The percentage of immunological reactivity to BPA 

in the form of antibodies is much lower than serum levels of BPA found in more than 80% of 

blood donors (Lu et al., 2017). These findings suggest that TBBPA exposure alone may not be 

pathogenic. Rather, immunological reactivity to TBBPA may be a key feature in the 

development of neurological disease. Another implication of this study is that measuring serum 

TBBPA levels may not be as important for determining diseases as measuring immunological 

reactivity to TBBPA as found with antibodies to TBBPA bound to proteins. It is likely that 

simply having chemicals occur in serum samples are not pathogenic, as they occur in large 

samples of the population without disease (Lu et al., 2017).  This finding can invalidate safety 

studies that have only measured the occurrence of TBBPA serum levels.  

The outcomes of this study may impact legislation. Flame retardants are sprayed on all 

pieces of furniture, mattress beds, children’s pajamas, car seats, upholstery, carpets and rugs in 

the United States. California Flammability Standard drove this practice in Technical Bulletin 117 

(TB117) that was instituted in 1975. TB117 states that a manufacturer is not permitted to sell 

items such as furniture, upholstery or mattresses in California unless they are sprayed with flame 

retardants. As California is such a large consumer market, the guidelines of TB117 have been 

adopted by all major manufacturers throughout the country, leading to widespread use of flame 

retardants. 

Legislative concerns regarding the safety of TBBPA to humans compared to its 

protective fire safety role have been debated for some time. Previous debates have unfortunately 

81



82	
  	
  

been one-sided. There was always the assumption that TBBPA added no risk to humans despite 

research on the safety of TBBPA before its widespread use. Legislation regarding the mandatory 

use of fire retardants may change as research continues to grow regarding their health concerns. 

The outcomes of this study provide additional evidence for human health concerns. The 

outcomes of this research can be used to support the development of safety regulations and for 

identifying the potential health concerns for current mandatory flame-retardant legislation.  

The theoretical framework that guided this study was the social ecological theory. The 

social ecology theory emphasizes the complexity of relationships between environment, social, 

political, legal, and ecological influences (Stokles, 1996). Exposing the potential risk of fire 

retardants (TBBPA) to human health as determined by the outcomes of this study is a necessary 

step to increase social consciousness, legislative actions, and public health policy, as promoted 

by the social ecology theory. The knowledge that exposure to TBBPA chemicals may impact 

neurological autoimmunity may lead to reconstructive and transformative outlooks on social and 

environmental issues. Social consciousness that TBBPA may be harmful to humans may lead to 

changes in social and political problems and manufacturing practices that can impact human 

health and environmental pollution, and thereby, promote changes in manufacturing legislation.  

The extensive use of TBBPA impacts both animal and human life, and these interactions 

should be carefully accounted for by environmental health scientists, legislators, urban and 

regional planners, and the diverse list of professional disciplines that are concerned with the 

interactive role of toxicant exposure to both social and environmental threats. The removal of 

toxic chemicals may have profound impacts on the society. For example, the removal of lead 

from gasoline increased the mean IQ of all American children and had generated an annual 

economic benefit of $213 billion, according to analysts (Landeigan & Fuller, 2016). There is 
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potential to gain both health and economic benefits after TBBPA is removed from consumer 

products. 

Flame retardants have spread throughout nature, and high concentrations of the toxic 

chemical have been reported in the meat and liver of wildlife such as wild boar, deer, and moose 

(Zacs et al., 2017). A marine sampling of water pollution in various aquatic regions led to the 

discovery of high levels of TBBPA chemicals that have been reported to impact marine life 

(Gong et al., 2017). The concentration of TBBPA has been reported at various levels of the food 

chain and include increased concentrations of the chemical in human blood, fat tissue, and 

mother’s milk (Jarosiewicz & Bukowska, 2017). These widespread findings of TBBPA 

concentrations throughout environmental locations, animal, and human tissues are alarming, 

considering the outcomes of this study and the role it may play in the social ecology theory.  

Identifying how toxic pollutants impact human health and society as a whole is necessary 

to initiate social consciousness and change, according to the social ecology theory (Stokols, 

2000). These include changes in public policy (local, state, national, and global), relationships 

among organizations, institutions, and both interpersonal and intrapersonal factors (Fox & 

Aldred, 2016). Determining the potential risk of fire retardants (TBBPA) for human health is a 

necessary step to increase social consciousness, legislative actions, and public health policy, as 

promoted by the social ecology theory. 

Recommendations 

The results of this study provide scientific, legislative, and clinical recommendations. As 

with all research studies, it is recommended that the outcomes of this study be verified and 

duplicated by other scientists. Descriptive and detailed steps to duplicate this study have been 

presented in the methods section of this study. Furthermore, study designs that provide greater 
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causal inference regarding the role of TBBPA should be investigated. Although clinical trials 

provide the greatest evidence for causal relationships, they are ethically not permissible in 

toxicology studies with humans. However, other study designs, such as prospective studies and 

case-control studies, can provide greater evidence for the potential toxic role that TBBPA may 

play in autoimmune disease. Case-control studies examining the occurrence of TBBPA 

antibodies in sera of disease samples compared to healthy controls can provide greater evidence 

of their potential causative role in disease promotion than the cross-sectional correlative design 

conducted in this study. The occurrence of TBBPA antibodies may occur in sera of patients who 

have multiple sclerosis, neuromyelitis optica, PD, and autoimmune demyelinating diseases. 

Study designs should compare if immunological reactivity to TBBPA in the form of antibodies 

has statistically significant differences from non-disease controls and disease case samples. 

Study designs should account for confounders such as medications, exposures, lifestyle, 

occupation, age, sex, and other immunological variables such as intestinal permeability, 

regulatory T-cell function, and hepatic biotransformation integrity. These variables can be 

controlled for confounding and providing more details regarding the causative role of TBBPA in 

neurological autoimmune diseases associated with a multivariate analysis using methods such as 

logistic regression. 

Additionally, prospective study designs evaluating the role that TBBPA antibodies may play in 

the development of autoimmune disease is recommended, if the cost of the study is feasible. 

Currently, the time-frame in which exposure or factors that impact immunological reactivity to 

TBBPA lead to the development of neurological tissue antibodies and neurological autoimmune 

diseases is unknown. Previous studies have suggested various timelines regarding the role of 

toxic chemicals and the onset of disease. An evaluation of the onset of neurological antibodies 
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and/or neurological autoimmune disease clinical presentation can be conducted in five-year 

intervals and compared to those individuals who do not exhibit TBBPA antibodies to further 

understand the potential toxic role of TBBPA in disease development.  

In addition to designing research to further investigate the causative role of TBBPA in 

neurological autoimmune disease development, this study also found that the use of antibodies to 

TBBPA bound to human albumin provides a different biomarker for evaluating safety concerns 

for TBBPA than simply measuring quantitative serum levels of TBBPA. As discussed 

previously, only a small fraction of a sample population exhibits antibodies to TBBPA. The 

prevalence of these antibodies is significantly less than the prevalence of elevated TBBPA levels 

found in both human and animal life. No associations with quantitative levels of TBBPA have 

been found with health concerns in previous safety studies. However, this study found that 

TBBPA antibodies are highly correlated with antibodies associated with neuroinflammation and 

autoimmune diseases. The outcomes of this study suggest that measuring antibodies to TBBPA 

bound to human albumin may provide a different perspective regarding biomonitoring studies, 

which are used to evaluate the safety profile of TBBPA in humans and animal life. This study 

provides further evidence that immunological reactivity to TBBPA may be a critical biomarker 

for evaluating the role the TBBPA may have in inducing the risk of neurological autoimmune 

disease development. TBBPA bound to albumin antibodies can be considered for biomonitoring 

safety studies.  

These safety concerns regarding the use of TBBPA in modern society provide further 

evidence for legislative safety concern recommendations for mandatory use of fire retardants. In 

1974, California passed a mandatory flame-retardant regulation called TB117 on upholstered 

furniture. Other states passed similar legislations requiring various products, including drapery in 
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public places, baby pajamas, and various fabrics used in the upholstery in furniture, to be sprayed 

with fire retardants. In 2013, a legislation in California modified the mandatory use of some 

types of flame retardants on many products. However, there are still mandatory flame-retardant 

policies throughout the nation. Despite a gradual shift to remove mandatory guidelines, there is 

an ongoing need to publish research that identifies safety concerns for flame retardants. The 

outcomes of this study provide further evidence that flame-retardant chemicals containing 

TBBPA are associated with increased risk for the development of neurological autoimmunity 

and neuroinflammation.  

Lastly, the findings of this study may impact the clinical management of patients 

suffering from neuroinflammatory and neuroautoimmune diseases that are found with the 

specific tissue antibodies used in this study (MOG, MBP, S100B, AQP4, and alpha-synuclein). 

Although there is not enough evidence from this study to suggest that these chemicals play a 

direct causative role in the development of the neurological autoimmune diseases, this study does 

provide evidence that individuals who have antibodies to the target proteins found in this study 

are strongly associated with immunological reactivity to TBBPA. Whether TBBPA is causative 

or not, the co-occurrence of these antibodies does have potential clinical considerations. The 

avoidance of toxic chemicals and environmental pollutants is a standard, general approach for 

reducing the toxic and immunological stimulating role of environment in neurological 

autoimmune diseases. Reducing exposure to TBBPA in the household by avoiding furniture, 

foam mattresses, and upholstery that is sprayed with TBBPA may reduce the exposure of an 

environmental immune trigger that has been found to be associated with diseases that have 

immunological reactions to the target proteins that were investigated in this study. In summary, 
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this research leads to scientific, legislative, and clinical recommendations regarding the impact of 

TBBPA health risks.  

Limitations 

Several limitations have been found within this research design. In this study, there was 

no information regarding the exact exposure of TBBPA. This limitation has been acknowledged 

in this study design. Although there are no specific details regarding the exposure of TBBPA to 

the study population, it is clear that TBBPA exposure occurs from various household products 

such as furniture, rugs, bedding, and the upholstery of automobiles. As the exposure to this 

chemical occurs in so many environments today due to the extensive use of fire retardants, it 

would be impossible to target a specific source of exposure. Furthermore, in our study, we did 

not measure the quantity of the TBBPA found in serum; rather, we investigated the immune 

reactive role of TBBPA when it binds to proteins. This measurement is not solely reflective of 

the degree of TBBPA exposure. Immunological reactivity to chemicals occurs from several 

factors associated with a complex interplay between exposure in combination with numerous 

immunological factors. This study was not designed to identify a toxicity index based on the 

degree of TBBPA exposure. Additionally, we neither had any information regarding the medical 

history of the study subjects nor was the study designed to determine the variables that lead to 

the development of chemical immune reactivity. Lastly, this study is limited in term of external 

validity. A random sample of 95 healthy blood donors may not accurately represent the general 

population or any subsets of the population that may have increased vulnerability to disease. Due 

to these limitations, further research would be required to determine the exact relationship 

between chemical reactivity to TBBPA and the development of neurological disease in human 

subjects. However, the outcome of the study provides novel findings that serve to assist in 
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understanding the potential role flame retardant chemicals, such as TBBPA, may have with 

respect to human health and disease.  

Summary 

Autoimmunity is a condition in which the immune system erroneously attacks the body’s 

own tissue. It is a devastating disease that impacts as much as 23 million Americans, according 

to the prevalence reported by the National Institute of Health (NIH Publication 05-5140). 

Chemicals may play a role in the epidemic of autoimmune disease. Researchers have found that 

chemical exposure, combined with an activated immune system or genetic risk, creates a recipe 

for the development of autoimmunity (Barragan-Martinez et al., 2012; Pollard & Kono, 2013). A 

significant concern in this regard is the group of chemicals that are flame retardants. 

Flame retardants are sprayed on furniture, mattress beds, children’s pajamas, car seats, 

upholstery, carpets, and rugs in the United States. The widespread use of flame retardant 

spraying was driven by the California Flammability Standard, Technical Bulletin 117 (TB117), 

which was instituted in 1975. TB117 states that a manufacturer was not permitted to sell items 

such as furniture, upholstery or mattresses in California unless they were sprayed with flame 

retardants. As a consequence of TB117, studies have found that these chemicals can be detected 

in household dust and serum concentrations in the population (Zota, Rduel, Morello-Frosh, & 

Brody, 2008).  

Tetrabromobisphenol-A (TBBPA) has been classified as a brominated flame retardant 

(BFR), and since the beginning of its use in 1979, it has become the most widely used BFR 

worldwide, with an annual production of more than 210,000 tons (Alaee, Arias, Sjodin, & 

Bergman, 2003). Research conducted in 1979 initially found that TBBPA was readily 

metabolized from the body, and therefore, it was considered a safe compound without active 
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biological activity (Brady, 1979). However, subsequent research has found that TBBPA is not 

entirely metabolized upon exposure and that TBBPA can accumulate in human fluids over time 

(Jakobsson et al., 2002).  

Not only was TBBPA found to accumulate in human fluids, but it was also later shown to 

build up in the adipose tissues of both animals and humans (Johnson-Restrepo, Adams, & 

Kannon, 2008). In a French human biomonitoring study of random women volunteers and their 

newborns, 44% of TBBPA was found in analyzed breast milk samples and 30% in both maternal 

and cord serum samples (Cariou, 2008). In a Japanese human mother-infant study, TBBPA was 

measured in maternal blood, maternal milk, cord blood, and umbilical cords. Researchers 

detected levels of TBBPA and concluded that the chemical could pass through the blood-

placenta barrier and lead to perinatal exposure (Kawashiro, 2008). Recently, in a prospective 

study of 304 mothers and their children, flame retardants were measured in breast milk at three 

months’ post-partum and again in 36 months: more than 70% of the subjects had detectable 

levels (Adgent, 2016). It appears that TBBPA is not as readily metabolized as had been first 

theorized in 1979, and it may contribute to the rising epidemic of chemical-induced 

neuroinflammation and neurological autoimmunity. This study was conducted to further 

investigate the potential theory that chemicals such as TBBPA may play a role in the worldwide 

epidemic of neurological autoimmunity.  

A quantitative cross-sectional correlation research study was conducted to assess the 

relationships between human subjects with TBBPA bound to albumin antibodies with myelin 

basic protein (MBP) antibodies, myelin oligodendrocytic glycoprotein (MOG) antibodies, 

aquaporin-4 antibodies, alpha-synuclein antibodies, and S100B antibodies. These antibodies 

represent the target sites for neuroinflammatory and neurological diseases such as multiple 
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sclerosis, demyelinating diseases, PD, NMO, neuromyelitis optica spectrum disorder (NMOSD), 

and biomarkers for the breakdown of the blood-brain barrier (BBB). The goal of this study was 

to investigate whether there are any associations and risks between chemical, immune reactivity 

to TBBPA, found in flame-retardants, in human subjects and biomarkers used to diagnose 

inflammatory and autoimmune diseases of the nervous system. Non-identifiable, non-disease 

blood samples from 96 blood donors were for enzyme-linked immunosorbent assay (ELISA) 

analysis in a clinical laboratory. The ELISA methodology evaluated optical density 

measurements for antibodies to TBBPA bound to human albumin, myelin oligodendrocytic 

glycoprotein (MOG), myelin basic protein (MBP) alpha-synuclein, aquaporin-4 (AQP4), and 

S100B. Three separate immunoglobulin assays, which included IgG, IgA, and IgM, were tested 

for each antibody.  

Statistical analyses were conducted to determine the correlation between the following 

variables: 

(1)  correlation between TBBPA bound to albumin antibodies and MBP antibodies 

(2)  correlation between TBBPA bound to albumin antibodies and MOG antibodies 

(3)  correlation between TBBPA bound to albumin antibodies and alpha-synuclein 

antibodies 

(4)  correlation between TBBPA bound to albumin antibodies and AQP4 antibodies  

(5)  correlation analysis will be performed between TBPA bound to albumin antibodies 

and S100B antibodies.  

The presence of statistically significant correlative relationships was conducted with Pearson’s r, 

Kendall’s tau, and Spearman’s rho, which are parametric and non-parametric association 

measures for IgG, IgA, and IgM independently. A Bonferroni correction was conducted with the 
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p-value to avoid a false discovery rate when testing for multiple comparisons. The adjusted alpha 

for statistical significance was set to 0.01.  

Risk ratios were calculated by converting each of the optical density continuous variables 

into binary variables. One standard deviation above the mean for each continuous variable was 

classified as a significant binary value of one. Any value below one standard deviation of the 

mean was classified as a non-significant binary value of zero. Risk ratio analysis was conducted, 

labeling the TBBPA antibodies as exposure variables and the neurological target protein 

antibodies as the disease outcome variable for each of the 15 relationships. 

The results of the study found a positive linear relationship that is statistically significant 

(p-value <0.0001) between TBBPA bound to human protein antibodies and myelin basic protein, 

myelin-associated glycoprotein, aquaporin, and alpha-synuclein with all three forms of 

immunoglobulins, such as IgA, IgG, and IgM. The degree of correlation ranges from moderate to 

significant correlation. The highest degree of association is with IgM. These correlations 

coefficients ranged from 0.85–0.92. Risk ratio analysis found a significant risk for the 

development of neurological antibodies with subjects that exhibited antibodies to TBBPA bound 

to human albumin. These risks ranged from a two-fold to a ten-fold increase risk even when 

using the lowest tail of the 95% confidence interval. In summary, the results of the investigation 

found that a significant linear association and risk in human subjects who exhibit antibodies to 

TBBPA with antibodies to a diverse list of neurological autoimmune target protein sites. 

There are several limitations of this study. The data analysis in this study used 

correlational analytic procedures. Correlation is not causative, and this indicates that there is no 

distinct understanding if immune reactivity to TBBPA is causative of neurological 

autoimmunity. Overzealous immune responsiveness may occur due to loss of overall 
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immunological tolerance, leading to both neurological and chemical immune reactivity. 

Correlative statistical does not permit to statistically account for confounding and effect 

modification factors in statistical data analysis. Additionally, the conversion of the data from a 

continuous variable to a binary variable to determine risk ratios significantly reduced power in 

the statistical analysis of this study. Although the effect size of the risk ratio was considerable 

and statistically significant, the confidence intervals for the risk ratios were extremely wide.  

The results of this study provide scientific, legislative, and clinical recommendations. 

Furthermore, study designs that provide greater causal inference regarding the role of TBBPA 

should be investigated. Although clinical trials provide the greatest evidence for causal 

relationships, they are ethically not permissible in toxicology studies with humans. However, 

other study designs, such as prospective studies and case-control studies, can provide greater 

evidence for the potential toxic role that TBBPA may play in autoimmune disease, and thus, 

should be considered. 

The outcomes of this study suggest that measuring antibodies to TBBPA bound to human 

albumin may provide a different perspective regarding biomonitoring studies, which are used to 

evaluate the safety profile of TBBPA in humans and animals. These safety concerns regarding 

the use of TBBPA in modern society provide further evidence of legislative safety concerns 

recommendations of mandatory use of fire retardants. Despite a gradual shift to remove 

mandatory guidelines, there is an ongoing need to publish research that identifies safety concerns 

for flame retardants. Lastly, the findings of this study may impact the clinical management of 

patients suffering from neuroinflammatory and neuroautoimmune diseases that have been found 

with specific tissue antibodies used in this study (MOG, MBP, S100B, AQP4, and alpha-

synuclein). Although there is not enough evidence from this study to suggest that these 
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chemicals play a direct causative role in the development of the neurological autoimmune 

diseases, this study does provide evidence that individuals who have antibodies to the target 

proteins found in this study are strongly associated with immunological reactivity to TBBPA. 

Whether TBBPA is causative or not, the co-occurrence of this immunological sensitivity does 

have a potential clinical consideration for the avoidance of toxic chemicals. Reducing exposure 

to TBBPA in the household by avoiding furniture, foam mattresses, and upholstery sprayed with 

TBBPA may reduce the exposure of an environmental immune trigger that has been found to be 

associated with neurological autoimmune target proteins investigated in this study. In summary, 

the outcomes of this research provide scientific, legislative, and clinical recommendations 

regarding the impact of TBBPA and human health risk.  
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Appendix D: Spearman’s Correlation Data IgA 
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Appendix E: Kendall’s Correlation Data IgA 
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Appendix F: Pearson’s Correlation Data IgG 
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Appendix G: Spearman’s Correlation Data IgG 
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Appendix I: Pearson’s Correlation Data IgM 
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Appendix K: Kendall’s Correlation Data IgM 
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Appendix M: Risk Ratio TBBPA and MOG IgA 
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Appendix N: Risk Ratio TBBPA and S100B IgA 
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Appendix O: Risk Ratio TBBPA and Aquaporin IgA 
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Appendix P: Risk Ratio TBBPA and Alpha-Synuclein IgA 
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Appendix S: Risk Ratio TBBPA and S100B IgG 
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Appendix U: Risk Ratio TBBPA and Alpha-Synuclein IgG 
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Appendix V: Risk Ratio TBBPA and MBP IgM 
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Appendix W: Risk Ratio TBBPA and MOG IgM 

 

  

117



118	
  	
  

 

Appendix X: Risk Ratio TBBPA and S100B IgM 
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